¢

M3

Digital Techﬁoldgy']néotporated “ |

AA100515

WWMCCS
Host to Front End Protocols: ¥
Specifications Version 1.0 o
John D. Day
gary R. Grossman
ichard H. Howe
DTIC
ELECTE
s JUN22 19810
B

5 November 1979
DTI Document 78012.C-INFE. 14

DISTRIBUTION STATEMENT A |

Approved for public release;
Distribution Unlimited

DNIC FiLE COPY

P
v

Q1 6 10 038

e,

-

DTT Document=-78012.C~INFE. 14

Vv

WWMCCS
HOST TO FRONT END PROTOCOLS:
Specifications

by

John D. Day
Gary R. Grossman
Richard H. Howe

Prepared for the
Defense Communications Agency
under contract
DCA100-77-C-0069
Phase B Network Front End Research and Development

by

DIGITAL TECHNOLOGY INCORPORATED
302 E. John, Champaign, Illinois 61820

5 November 1979 DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

S fmy ™

. Kravitz, ﬁ?gject Manager

Approved for Release:

Jo

TS,

TR)

3

YL
J

i
et

TS

I

<

St e I OO

ABSTRACT

This document presents the specifications of
the WWMCCS host to front end protocols. A
brief overview of the WWMCCS network front
end protocol architecture is presented. The
link protocol is functionally specified. The

AHchannel®_ protocol is completely specified.
The complete channel protocol specification
includes a narrative overview of the channel
protocol mechanisms, a detailed treatment of
each channel protocol message and event type,
and a complete state table, A meta-
specification for the service access proto-
cols is presented.

A\

\
3

\

DTIC TAB
Unannounced
Justification

Accession For .
[NTIS GRAI v

O
0l
]

By.

Diat Special

-

Distribution/
Porbmramrtsrrrms = - - = = e -
Aﬂallabilipy Code§____
Avail and/or

e w mm i e ———————

\ Channél Machines ..ieeewesssiviosssaseioseosnsssssnsensss L1
Channel Multiplexor/DemultiplexXOr ...eosesessesscasssios 12
Message Formatting and FLiltering ..c.iceeeicessessccsensancses 13

Parts Of MeSSages ceeveereeecrccrierimicnrearneassaraoes 13
HEADER Fi€lAS seeecevcsoncsoinscens scosvassscsioinssnsas 15
Channel Protocol Message Filterinmg :...iceecigrescissnss 16

Message Multiplexing and DemultipleXing «.veseeseson soeeesss 21
Addressing CONVENtioNS seeveiee.rcnsoeninsesoass nossoonss 2L
MULtiPleXiNg seveesecrescasegnsinsosnsocossass vobossenee 22
DemMULEIPleXing tieieeeeaensmmenesacnessionnansciseaneees 22

TransMission CONtYOL .ueeeeeeeenrsoionocnmessonanns nossiosens 25
Controlled Transmission Mechanisms ...cievevisonencninns 25
Controlled Transmission Procedures ...ieeesee seeseesess 31
Uncontrolled TranSmiSiOn ...veacesssenecasmisassascnsses 39
Termination .e.eveecscescsmnesssnsssersrneinsiosssacssss 4l
Non-Flushing Deadlock AVOIGanCe .u.eeiseersnavessossesss 42

NOTATION AND NOMENCLATURE +evveeeevnsnoonnsnennosons teeersseseesas 45

COMMANDS AND RESPONSES ««ssvveecseeencnanntosocsasencsoososnsncees 49

TNEYXOQUCELON o veeevreeraceootnsssasssssasssnssosssssssssssenee 49
Begin COMMANGA s seeesescnsennuonesassssssovessasnnnsessssns 51
Begin: Responseeevvecennen Cererneceesananne tesseensesss 54
End_pbmmand T T T o eves 58
End-Response, ..eeeeaes et eesesrseserarrens cesrtasesenareses 64
- Execute COommand ..reeeerseerasacssenansossoasestoscioonosssacse 69
C Execute_Besponse tecernanasen ceveee Y
NOP toeeeiocevonnineancsassesesoncssesssssassssessnsaassssssses 10
Transmit COMMANA +.cevimereecsacsanserecnsacnsceanascnans cees 18
Transmit RESPONSE .iuvevecenssenscavestaersconsroseonans ceense 81

Chanhel Protocol Message Formatting. .im.eeeceesesecessis 13

SEALUS COABSE v eveennrnnnomrsosoncinaiorossaneny deseesasy A

~';C€
an
Table of Contents i
=
Pageé .
NETWORK FRONT ‘END PROTOCOL ARCHITECTURE +:veeesvevecsencecnoeessons il
Network Front End .eeeveeeeeseeecenerccnneorononnoninessineions 1
NFE Protocol AYCRiteCtlre .ieeieeeveciveseesososrocvonosonines 1
NOTE ON THE. SPECIFICATIONS +eecocveesnncosasnsossonsssnconnsonsaeei 3
¢ Specifying the Link PEOLOCOL «sevservrnnrrsronscensessenseness 3
q specifying the Channel ProtOﬁol . |
4 Specifying the Sérvice Access Protocols .ceicerccercecnocceees 4
LINK PROTOCOL SPECIFICATION «+vvsvscivsionnsacsiosssasssnmmnsinsens D
| CHANNEL PROTOCOL SPECIFICATION sesececeecensininenssonssorvssassane 9
3
E 'OverVJt.ew ooQ-otttoooonooo'n-oocooo'-totooo3oao“ooqocooo'ovo-oo:9 "
Channel Protocol MeSSAgeS .eveeesrsscncesesssssescsscssas 10

T e

[N i ion it s st s

Table of -Contents Continued
Page

. Complete Channel Machine State Tablecceeveveeeeeesas 85
INtrOdUCLION +uveveenseonevnvsosecosssssossscssccascasas 85
State Table ...cccieereecerccccccocsoccasoecsnccanssnsnass 87

CHANNEL INTERFACE .cccececrectcccssoscesovsceiboscsnccrascscasanease 89

INEXOAUCELION +veveneroacennvccesccssnsosensesssssceasnonneonas 99
C_ACCEPL cevcesesrarecrrssessesesrsonososcecscssasssensssass 100
C Pegin C tevevrsecnreivesseceseressrcotrcacncssosecanssses 101
C bhegin ¥ toieiierieneieennecerrenntectoccsssssrcsnasssanessss 102
C eNd C veveveecnasosessescsossssrasnocossscsnasnsssscsassss 104

C_end_r $ €000 0000000000000 00000000 P00t srs000 00000 107

C eXeCUt® € tevvovercrersesncorrercecsesccrecsacoscagocssass 109
C_@XeCULE I svvverrcrnorcconssooorssasnncsasancsnnnsssessenes 111
C Y€AAY +verseerescrrtcssscscsresrsvocesearcscareassrsosenss 112
C YeJeCt cevverrerascroscsceiatrotsestsiescersescatsancacess 113
C_StAtUS tveececresronsssserssscnssaseassssssnnssesnsansasss 116
Cc_transmit € sveevicereatiisscrtoetiiiesttstsretneasaeasess 119
S begIN_C tivrererietnerirtiiirttiietttiereartistrecseaseaess 120
S bEgin I ceviuveeroesvorneccecrossoracasscescecsnansesnanss 122
S eNd C vevrenercossersssssassstasscssasscssncnasesaocssosss 125

S ENA ¥ voecesrevcesostsocssssscsasstessserssossnsossassssesece 127

s:éxezhtg_c T R R '3
S_EXECULE X tevvesornornsasnsesarososesssssassassnsrsnssvens 132
s identify .couiiivniirreiiitiiieiiiiiiiiiiitiiioriiiessieee.. 134
S Xeady secosecrsesssrscssreessstssassasssasissssscssecssass 136
oL L - R R R R T PR 138
S transmit € ..veeiietriiiiiiietiiiiieiiiiitiitoeteeeaeaees 139

INITIALIZING HOST - FRONT END COMMUNICATION ..vscveansccescscooss 141
SPECIFYING SERVICE ACCESS PROTOCOLS +tivvevesevsvonscoonenseonsenes 143

INEYOAUCEION ceovevseoscsosanssasnsssorsssscssssassasssasssss 143
Specifications and Adaptation Descriptionsc.ceeceseaco. 143
Service Access Protocol Specificationsieeeeeceecceesss 145
Specifying FieldsS seeeeeseevereeonssvsssassosocnnssesses 147
DEFAULES vvvveveeovsosonacsocssncasnsssasasssanssassnes 149
Adaptation Descriptionseeeceveressesrseacseassncasesss 150
Data Representation Mismatchcocvevnevevoesnseses 153
SAPI State Table .v.eeceeeseecsocsssssesassssscscsasavssssse 155
TNEXOAUCEION vveseeeevresessoscosssssssssasensssssences 155
Stale Table cevevsveevsesasesssnssvonssssssssansenassss 158

HFP MAINTENANCE SERVICE tvtveverscsncenctsevagronsoscnsnseensaaes 163

Channel Protocol Response Status Codes .eoeeeerernrecconseseos ee. 173

i

Ve e

¥

13

~

PN

HINIOFLIHOYY TOD0LOYd ANI INOYA MIOMIAN :T 2inbTg

SYOD030xd HIOMIDN

SITOD030Ig pPUF JUOI4 O3 JISOH

ram v marea

> 1}
3uzy 3UTY XU
A
$
llllllllllllllll 330asueay,| TAUURYD = = = — - — = = = = e e W] p3uuRYD
|
J
“
o - o N
2014235 ' H S5220Y S$S200Y
lllllllllllll “I. mlu IDTAIDY e e o e e - e o] =] BOTAIDS
, : .
‘ T : : 7 T
n--_. ———— i J feepmccaas
y
aANd ILNOYdA LSOH
Ve
€ «
N
N 2. . SR N d

T 5

s e e e .

N

g ’ NETWORK FRONT END PROTOCOL ARCHEITECTURE .

P

Network Front End

v A network front end (NFE) is a computer system that interfaces

a host computer and terminals to a network. A host connected
directiy to a network must support the often large and complex
protocol interpreters for the network services. An NFE
'implements these protocol interpreters for the host. An NFE
thus relieves the host of a considerable burden of protocol
processing. A front ended host need support only the
relatively simple intérpreters for the host to front -end
protocols. This frees host resources for applications use.
An NFE also provides terminal access to the network. This

further frees host resources and also provides for continued

access to the network in the event of host failure.

NFE Protocol Architecture

An NFE implements two different sets of protocols (see Figure

1):

PR e

1. the protocols for the network communication services,
and

2. the host to front end protocols.

The protocols for the network services include:

%
TR T R s RS

l. a link nrotocol for communication between the front
end and the local packet switch,

K- 2. a transport protocol for reliable data transfer
between local and remote subscriber processes, and

4»,
k V7
1
t
)

WE

TERIT T

e e

A - ~ AN - 7

NEE Protocol Architecture

3. one or more higher order service protocols for; e.g.,
a network wvirtual terminal or a file transfér
. service.
The host to front end protocols include:

1. a link protocol for communication between the host
and the front end,

2. a "channel" protocol for reliable data transfer
between host and front end processes, and

3. for each network (or other) service supported by the
front end, a "service access" :protocol which provides

for mutual access between host applications and the
service.,

The interpreters for these protocols have their apposites* in

the host,

As Fiqure 1 indicates, both the network services and the host to
front end protocols are layered. The network layers are, from
bottom to top: the link layer, the transport layer, and the
higher order service(s) layer(s). The host to front end layers
are, from bottom to top: the link layer, the channel layer, and

the service access layer.

% ‘"Apposite": Having the same syntactic relation. E.g., in
Figure 1, the channel protocol interpreter in the host and the
channel protocol interpreter in the front end are each other's
apposites.

» » " - - . on: e e P

Noté on the Specifications

i - -
e .- . N N B

NOTE ON ‘THE SPECIFICATIONS

Specifying the Link Protocol

¢

The link protocol definition depends on ‘the 1link hardware.
Thus, ‘the link protocol cannot bhe specified without reference
to a particular installation. However, the properties of the
virtual communications medium that the 1link protocel
implementation must provide have been functionally specified
in the present document. When a link protocol satisfying this
functional specification has been accepted for a given
installation, the complete link protocol specification should

be appended to the present document.

Specifying the Channel Protocol

o A b

oIl

The channel protocol definition is implementation independent.
Thus, the channel protocol has been completely specified in
the present document. Included in this specification is a
descriptive model of the interface bhetween a channel protocol
interpreter (CPI) and any service access protocol interpreters
(SAPIs) or other procesces that communicate directly with a
CPI. The interface between a CPI and the 1link protocol

interpreter is to be defined by the link protocol. Therefore,

1

,.'W
Car—e:
ok

3
Tt

o e Ty

- PP

s

TR XE R
i e

N

N

. S v R L oo
. - - A . . k) YESL

TR P e et e eysgy e TS
N ,\‘a//:.,? tNd ;“.:

* Note on the Specifications

the CPI-link interface has not been specified in. the present

document.

'Specifying the Service Access Protocols

The service access protocol definitions depend on the services

to which they provide access. Thus, the service access

protocols cannot be specified without reference to the

particular services. For the same reason, they cannot bhe

functionaily specified. However, to ensure uniform

documentation, a meta-specification of the service access

protocols is presented in the present document. Whenever a

service access protocol satisfying this meta-~specification has
heen designed, the complete service access protocol

specification should be appended to the present document.

Note: every SAPI communicates directly with 1its CPI. This
direct communication is defined by the channel protocol (see
Channel Interface). In some cases, processes other than SAPIs
may communicate with one another using the channel protocol
implementation as their communications medium, Such processes
also communicate directly with their CPIs. Whenever such a
process is to be implemented, the complete specification of
its use of the channel interface and, if appropriate, its use
of service access protocol messages (see Specifying Service
Access Protocols) should be appended to the present document.

Cramma el

o S e B
P

Link :Protocol Specification

LINK PROTOCOL

"8pecification

The hardware link between the host and the front end may .difﬁer
from site to site. Thus, the link protocol cannot be defined
without -reference to a given installation. For each
installation, a link protocol must be implemented which provides
efficient bi-directional communication, i.e., which efficiently
uses the available host and front end resources as well as the
communications hardware. 1In addition to efficiency, the 1link
protocol implementation must provide the channel protocol
interpreters (CPIs) with a virtual communications medium having

the following properties:

1. the appearance of full duplex communication,
independently of whether the link itself is full or half
duplex,

2. delivery of data in-order and without duplication or
loss,

3. flow contrel,
4, bit stream transparency,
5. fault notification, and
6. quality of service defined as
a) an undetected bit error rate less than 10%*-12,

b) undetected data loss rate less than 10**-}15,
and

c) undetected misdelivery rate less than 10*#*-15,

If the link protocol does not provide the CPIs with a virtual

. L e

R

R A

Link Protocol Specification

.communications medium satisfying these criteria without

exception, their correct operation cannot be guaranteed.

When a link .protocol satisfying these criteria has heen accepted,
the complete 1link protocol specification should be appended to

the present document. Either an existing or a new link protocol

may be used. If an existing 1link protocol 1is wused, its

specification should already include the following information:

l) a reference to the document describing the link
protoceol used,

2) the version of the protocol,
3) the options implemented,

4) the parameter values used, such as time-out values,
etc.

5) a detailed description of any 1local conventions or
modifications to the protocol.

If any of this information is missing, the specification should

be augmented to include it.

If the link protocol accepted has been especially designed for a
particular host-front end configuration, then a link protocnl
specification must be written. This specification should £follow
as closely as possible the method of specification used in the

present document,

BLANK PAGE *

N

HFP Maintenance
Service

Channel Interface

fogmeena

/pheynel

pd /I ‘l\ N

{Channel lhterface)

State Machines

Transmissipn Control

A
'

Nl

Multiplexor Demultiplexor
Formatting Demultiplexing
Multiplexing Filtering

\

to Link level

from Link level

Figure 2: CHANNEL PROTOCOL INTERPRETER FUNCTIONS

L%
g

CHANNEL PROTOCOL

Specification
Overview
The host to front end channel bprotocol defines the
communications medium for the service access

interpreters (SAPIs) (see Figure 1). This communications

appears to the SAPIs as a

channels", each of which will support a single service

connection. The

terminating these channels and, together with the link

provides for duplicate free, loss free,

exchange, which may bhe either ordered with flow

unordered without flow control.

The units of communication between channel protocol

(CPIs) are called ‘"channel protocol messages".

communication at the interface between a CPI and an

called "channel interface events",

1) the channel messages and channel

SAPI

I AR AT X eyt mntiplang ot ool) LA NS 3 CENNIE LS A BN N s s
g foemeis Sk et » § bz v—w-'\‘@
X A 3 p

NAte

virtual

protocol

medium

set of host to front end "virtual

access

channel protocol provides for establishing and
protocol,
and error free data

control or

interpreters

The units of

are

The c¢hannel protocol defines:

interface events,

2) their use in establishing and terminating channels and in

effecting the flow of data over them, and

3) the states of each end of a channel

state transition rules.

together

Each CPI consists functionally of a channel interface,

machines, and a

channel interface provides access to the channels for the

with

multiplexor/demultiplexor (see Figure 2).

the

channel
The

SAPIs.

- PR —

:f\,"Q‘:ﬁ\ & AT e :5,“—’\"" e
i - . LT

,
¥4
4

N AT

o R

CHANNEL PROTOCOL
Overview

Each channel machine maintains the state of one end of a channel.
The mnultiplexor/demultiplexor multiplexes messages coming from
the channel méchines and formats them for transmission wvia the
link level. It filters messages coming from the link level and

demultiplexes them to their respective channel machines.

Closely allied with each CPI is an HFP Maintenance Service
process that participates in initializing host-front end
communication, records errors reported by the CPI¢s), and

communicates these error reports hetween apposite CPIs.

Channel Protocol Messages

There are five types of channel protocol messages: Begin,
Transmit, Execute, End, and Nop. A message of a given type

may he either a Command or a Response.

Begin_Commands &and Begin_Responses are used by CPIs to

establish channels between them.

Transmit_Commands and Transmit_Responses are used by CPIs to
effect data exchange over the channels. The use of
Transmit_Commands and Transmit_Responses provides for

maintaining order and flow control.

Execute_Commands and Execute_Responses are also used by CPIs
to effect data exchange over the channels, but the use of
Execute_Commands and Execute_Responses does not provide for

maintaining order or flow control.

- 10 -

. = S L T i e 5 g
e e v e N T T T R T LT e AR SN T T TR T R S N R E e R T
e RS T $ O - -~ = S P
N - .
‘ . N
3h - - e gy ——

CHANNEL PROTOCOL
¥R -) Qverview

End_Commands and End Respcnses are used by CPIs to terminate

) one or more of the channels betwéen them.

Nops are used by CPIs as filler when channel protocol messages

do not completely f£ill link protocol frames.

Channel Machines

! A channel machine consists functionally of a state machine, a

l

|

| !

% ‘ transmission controller, and a channel interface (sece Figure
| 2).

|

\ The state machine maintains the state of its end of the
| 1

channel. The state machine changes state in response to the

messages and interface events received by the channel machine.
The transmission controller provides message flow control,

duplicate message detection, and out of order nmessage

Ry

detection (see Transmission Control).

o EE Y

The channel interface receives channel interface events from

gt

the SAPI and the state machine, performs consistency checks on

them, and passes them on to the state machine or the SAPI,

respectively.

CHANNEL PROTOCOL -
Qverview o

ChanneI,Multiglexor/DemqltiplexorJ ;

The channel multiplexor/demultiplexor performs multiplexing,
demultipleging, formatting, and - filtering functions for the
CPI. Messages generated hy the CPI are formatted according to
. the channel protocol message formats. Messages Erom*the’
channel machines, the filter, and the demultiplexor are
multiplexed into a single stream and passed to the link level.

AN The multiplexor ensures that each channel receives its share

of the link level bandwidth.

Messages received from the 1link 1level are checked for
correctness and consistency. Messages failing these checks

are filtered out of the data stream. The appiopriate Response

R

C(if any) 1s formulated and passed to the multiplexor for

transmigsion to the apposite CPI. The HFP Maintenance Service
is notified of the error. Messages passing these checks are

sent to the demultiplexor.

; The demultiplexor passes each message to the appropriate

channel machine, if possible, If there is no channel machine
to which to pass the message, the demultiplexor formulates the
appropriate Response (if any), passes the Response to the
multiplexor for transmission to the apposite CPI, and notifies

the HFP Maintenance Service of the error.

Sudet

Al

R R T T o

e XD e e

e Ay,

t
i

{

P;

l

TN '375_”,\
=

Eoin T

B ik ke

7 DI ians s T e £ g, ¥
o A e G

Ay

Méssage Formatting and Filtering

-~

Messagé Formatting and Filtering

This section specifies the format of channel protocol messadges

and the consistency checks to be performed on each message before

accepting it.

Channel ‘Protocol Message Formatting

In order to simplify decoding and buffer management, all

channel protocol

messages have th% same basic format. This

format is shown in Figqure 3 (see p. 14).

Parts of Messages

N ——— vt ——

Each message has three parts.

Part

HEADER

PAD

TEXT

Function

e e

comprises the fields containing the
information for executing the channel
protocol for this message (see below).

is =zero or more bits long (an
installation parameter) and serves
only to place TEXT on a boundary
convenient for both parties to the
protocol.

contains a service access or other
higher level protocol message. Since
the Size field (defined below)
contains the number of bits in the
entire message, and since the HEADER
is 72 bits long, tahe size of TEXT is:

(Size) - (size of PAD) - 72,

T Y TR

A

S

SRR Y

”Mﬂmmf g w

Meséage Formatting and Filtering

Message Format
\ Alternate
Field Field Alternate
Field L Size Size Field
Name (bits) (bits) Name
HEADER’ == \
| i
Size 16 7
| I
| f
| === mmm - |
Type { 3 :
C/R I 1 |
| === |
Credit | 4 !
; l _______ I-oo..oul ——————— I
, Seq | 4 | | |
| . | | 8 | Service
" Ack I 4 | | | (BEGIN Command)
i':' —————— IOOOOG .I _______ I
(not used) | 4 |
| ~mmmme I
| |
Group | 12 I
I |
| === |
| |
Member | 16 I
| I
| I
[=== levesnes|=mmmm==m |
Control | 8 | | 8 | Status
‘. (Commands) ; : | f (Responses)
e ceerena | e I
. PAD INote A |
i | === |
. l |
v | I
,’ TEXT INote B |
‘ | |
\-—====~ /

Note A: The size of PAD is an installation parameter.
Noté B: The size of TEXT is computed by:
(Size) - (size of PAD) - 72.

Figure 3: CHANNEL PROTOCOL MESSAGE FORMAT

- 14 =~

HEADER Fields

e e om e & e ie m e v e = = mas e v e me e e af e ;e

PN A W f;‘.,&?gi\;\‘:..« oy W T T
v [aks

Message Formatting and Filtering

The functions of the HEADER fields are defined below.

Field

‘Size

Type

C/R

Credit

Seq

Ack

Service

Function

specifies the number of bits in the
entire message. This field is 165 bits
long: It allows the representation of
message sizes of up to 65,535 bhits.
Actual maximum message size is an
installation parameter which may be
less than this.

specifies the message type:

Begin f
Transmit 1
Execute 3
End 4
Nop 5

specifies whether the message is a
Command (C/R = 0) or a Response (C/R =
1).

specifies the number of
Transmit_Commands beyond the number
specified by the Ack field (see
below), which the sender of this
message is prepared to receive.

specifies, in a Transmit_Command, its
sequence number. Specifies, in all
other messaqes (except
Begin_Commands), the sequence number
of the last Transmit_Command sent by
the sender of this message. In
Begin_Commands, bhoth the Seq and Ack
fields are replaced by the Service
field.

specifies the sequence number of the

last in-sequence Transmit_Command
correctly received by the sender of
this message (except in
Begin Commands) . In Begin_Commands,

both = the Seq and Ack fields are
replaced by the Service field.

specifies, in Begin_Commands, the SAPT

- 15 -

bt

to which the channel is to be
established. The Service field
occupies the same space as the Segg and

Ack fields 1in all other types of
messages.

Group specifies the channel group whicn the

message references (see Addressing
Conventions).

Member specifies the channel which the
message references within the channel
group (see Addressing Conventions).

Control specifies control information for
Execute_Commands and End_Commands.
Its use in other Commands is currently
undefined, The Control field in
Commands occupies the same space as
the Status field in Responses.

Status specifies status information in
Responses. The Status field in
Responses occupies the same space as
the Control field in Commands.

Channel Protocol Message Filtering

When a channel protocol message is received by a CPI, it nmust
be checked for validity. Before the message is demultiplexed,
the filter function of the CPI performs validity checks on it

(see Figure 2). These validity checks are for:

Message Size: Compare message length for agreement with
the contents of the Size field., It is assumed that the
length of 4§ message can be determined independently
'eiﬁher from the hardware or from the link protocol

interpreter.

S Wﬁi}‘ o TS
e ARSI 3 : P

y Jé TR asf' 9’7}»51&
pay

s e et &

Messdge Formatting ahd Filterihg:

';-

Note: The hardware determined length may be greater than
the contents of the Size field. (In some cases, the
hardware will pad the message out to a word boundary on
the receiving system.) In such a case, the valldlty
check can only be for the hardware. determined 1length
being less than the contents of the Size fle]d

g

T

Message Type: check the contents of the Type field ¢to

determine whether or nct the value represents a valid

Type.

Messagé too large: check the Size of the message to

determine whether or not it exceeds the maximum allowed

at this site.

Group and Member fields: check the Group and Memher

3 fields to determine whether or not the message references

| a valid Group and Member.

Note: Since this check is tantamount to demultiplexing a
message, it may be performed as part of that function.

Service: if the message ls a Begin_Command, then check to

determine whether or not a valid SAPI is being requested.

Control field: check the Control field (if defined) of

each Command to determine whether or not the value is

: valid for this Command type.

Status field: check the Status field of each Response to

determine whether or not the value is valid for this

Response type.

If an error is detected in a message, the normal procedure is

L NE e ”

- 17 =

Message Formatting and Filtering

4 K

5

. i
A

& to log the error in an error log, send a Respoﬁse (if any)
% ' ’ rotifying the apposite CPI, and discard the message. Thepg
' are two exceptions. First; if a message fails either the Size
of Type field checks, the CPI cannot trust any of‘the'
information in the HEADER to be correct. Therefore, the CPI
cannot determine what kind of Response to respond with.
Second, if the CPI detects an error in a Response, it cannot
send a Response to a Response. In either case, the CPI uses
the HFP Maintenance Service to notify the apposite CPI of the

error.

i Note: since a CPI only communicates with only one other CPI
! ! (and not with many), it is not necessary that all of the above
{ , checks be made at all times. The checks for wvalid Service,
i Contrel, and Status may be made during a testing phase of
operation and omitted during normal operation.

 §
I§:

- R AP T

A s A e ikt s B o eeh o e g % ek e

Message Formatting and Filtering =’

Status Codes

o et e e e

Every Response contains a Status field whose value indicates
the success of or the reason for failure of the Command to
which it is a Response. The Status field wvalue conventions
are:
a. zero indicates that the action initiated by the
Command was successful;

b. 1 to 31 indicate errors applicable to all Commands at
the channel protocol level;

c. 32 to 63 indicate errors specific to individual
Command types at the Channel Protocol level;

d. 64 to 255 are reserved for internal wuse within the
host and front end.

The codes common to all Responses are summarized below.

Status Meaning

g Command was successful,
1 Channel non-existent: the Group and Member
fields of a Command (other than a

Begin_Command) referenced a channel machine
unknown to the receiving CPI,

2 Illegal state: a Command referenced a channel
machine which was in a state for which the
Command is an illegal input.

3 Command not implemented: a Command was
received whose Type is legal but not
implemented. Currently this can only be a
Begin_Command or an Execute_Command.

5 Message too long: the number of bhits in the
Command exceeded the maximum permitted by the
receiving CPI.

6 Service access protacel message error: an
error in the service access protocol message

- 19 - » i

i

‘ B contained in the TEXT field of the Command was
detected by the SAPI.

7 Illegal Control field value: the Control field
of the Command contained an undefined value.

Jmte
ot

The Status codes specific to each Response are given under s

specification (see Commands and Responses)..

% AT
PRI iy v,

—_—
4
y
1
’
3
¥
N
i
13
£
.

~

g
.. NSRRI ot e , - — i
i = i —

T e S

Message Multiplexing and Demultiplexing

Message Multiplexing and Demultiplexing

Addressing Conventions

Each bi-directional service access connection is supported by
a single host to front end channel. Usually, many such
channels must be maintained over a single physical connection.
A number 1is therefore assigned to each channel to identify
it. It may be desirable to group channels (e.g., according to
service) and manipulate the group as a whole, For this
reason, the channel identifier 1is divided 1into two fields
called Group and Member. A channel number whose Membher field
has the value zero refers to all channels of the group. The
channel protocol defines the following conventions for these
fields:

1) An End_Command with Group not equal to =zero and
Member equal to zero terminates all channels in the
specified group.

2) An End_Command with Group equal to zero and Menmber
equal to zero terminates all channels between the
two apposite CPIs.

The Group and Member fields in a message HEADER are specified
to be large enough (12 and 16 bits, respectively) to allow an
installation to place all channels in a single group, to place
each channel in its own group, or to use the full power of the
two-dimensional <channel address structure. A channel |is
assigned its number by the CPI which initiates |its

establishment. Since apposite CPIs refer to a particular

- 21 -

T I drmasstaioaras v cacian s -

ey

mia L e

gy

Message Multiplexing and Demultiplexing

channel by the same channel number, and because either CPI may
initiate <channel éstablishment, name space conflicts must ‘he
avoided. This is accomplished by pre-assigning half the name
space to each end. The high order bit of the Group fieldAis
used to distinguish the two ends. The host owns the half of
the name space with the high order bit of the Group field
equal to zero. The front end owns the ‘half of the name space

with the high order bit of the Group field equal to one.

Multiplexing

The unit of multiplexing is the channel protocol message. All
messages from the channel machines and any that may be
generated by the filtering and demultiplexing functions are
passed to the multiplexor for multiplexing into the link

level's single data stream,

Demultiplexing

Messages received via the link level from the apposite CPI are
passed to the demultiplexor in accord with the state of flow
control at the link level interface. The messages are then
checked for correctness and consistency (see Message
Formatting and Filtering). If a message passes these checks,
the demultiplexor uses the Group and Member fields of the

message HEADER to determine which channel machine(s) the

I

7 A A - . - t -

44

e N

P

i
Holp

o

o
i MBI

¢
4

GO G

Tt -~ . - -
.0 “ -
{ — A e R . i s s 0 . et e -

‘Messagé Mulitiplexding .and Demultiplexing

message addifesses, The message is then passed to the
indicated . channel machines(sj. If the méssage is a
Begin_éommand, a new channel machine will be created to

process ‘this request for a connection.

A~

EeN

I

Tr e Tk e

©oa

* Message ‘Multiplexing

I A A
» P e - Ca e P S el S S =
by * S -

and Demultiplexing

FRONT END

SU—
r‘...|.. .

i

|

¢ 1 e mm e '
: s : A
) N)
] N :
i | service s = = =t service . [servi el il
; Access FLOW Access i L ervice
(CONTROL «_ | |
channel [mefm e m e e = |- — =] channet Transportl. o + - -
Link Link Link

S — -

flost to Front End Frotocols

Figure 4: CHANNEL PROTOCOL FLOW CONTROL POINTS

- . - < - . B . B s R T P R N

PO IO D A ORI o, S5

e AT N g R
- Py

. Xiwe

e

-

Transmission Control

Together, the channel and link protocols provide for duplicate-
free, loss-free, and error-free data exchange. The exchange of
data between apposite CPIs may be . either ordered with flow
control ("controlled transmission"), or unordered without flow
control ("uncontrolled transmission"). The link protocol
provides for error detection, and lost and duplicate message
detection. However, duplicate messages may be re-introduced by
retransmissions at the channel level. Duplicates thus introduced

are detected by the CPI and removed.

In addition to defining these functions for ensuring the
integrity of the data stream, the channel protocol also defines
the interaction between controlled and uncontrolled transmission,

and the flow control mechanisms for the individual channels.

Controlled Transmission Mechanisms

The channel protocol implementation provides a controlled data
stream to apposite SAPIs. The controlled data stream
preserves order (i.e., data is delivered to the receiving SAPI
in the same order 1in which it was presented by the sending
SAPI) and is flow controlled. Flow control mechanisms are
employed at three different points 1in the controliled data
stream between apposite SAPIs (see Figure 4). This threefold
flow control prevents a slow receiving SAPI from being overrun

by a faster sending SAPI. The channel level flow control also

- 25 -~

W, BRI T

el e o

SRR G

T

T
s

Slaieidd

7 e

i

Transmission Control -

P

helpsfté ensure fair-use of the link level by preventing any

single chanhel machine from flooding the multiplexor with

messages. The controlled transmission data stream is provided

via the Transmit_Command and the Credit, Seq, and Ack fields
of other Commands and Responsés and via the s_ready and

ci_ready channel interface events.

Credit: flow control between apposite channel machines is
provided by the receiver of Transmit_Comﬁands granting Credit
to the sender. Credit can be sent 1in any channel protocol
message (except End_Commands and End_Respcnses). The Credit
field of a message contains the number of Transmit_Commands
the sender may send beyond the last message acknowledged. 1In
other words, the value of the Ack field added modulo 16 to the
value of the Credit field is the largest sequence number the
receiving channel machine is currently willing to accept. The
flow control mechanisms are described in greater detail in the

section on Flow Control below.

Sequence Numbers: order is preserved by assigning a unique

sequence number to each Transmit_Command. Sequence numbers
are assigned in ascending order module 16, The sequence
numbers are the basis for ordering, duplicate detection,
acknowledgement, and flow control. Each message type (except
Begin_tTommands) contains a Seq field. In messages other than
Transmit_Commands, Seq specifies the sequence number of the
last Transmit_Command sent by the sender of the message. In

Begin_Commands the value of Seq must be zero.

- 26 -

s

I S

R e BRI AArioy (R i

Y

s T T ST T T Gt 2
L KT T TR T T A T T LANEa N
- oo .) o o ase Lt . s L

- - - PR ~ L.

, ' ’ transnission Controd

-

- Acks: delivery confirmation of Transmit_Commands is

accompiishedv via acknowledgements. FEach message type (except

Begin_éommandsr contains an Ack field. An Ack is the sequence

number of the last Transmit_Command correctly received by the

receiving channel machine. The Ack confirms the

delivery of

all messages with .sequence numbefs less than or equal to the

sequence number in the Ack field. In Begin_Commands, the

value of Ack must he zero. Arithmetic and comparisons on Acks

is done modulo 16, and, in order to avoid ambiguous

interpretation of

sequence numbers, a channel machine cannot

have more than eight unacknowledged messages outstanding.

Sending Queue:

since the sending channel machine may send data

to its

apposite faster than it can bhe accepted, flow control

is used to prevent the

sender from the

flooding receiver,

Therefore the sending channel machine has a queue for messages

waiting until flow control .allows them to bhe sent. Messages

from the

controlled data stream are entered into this queue

first in first out (FIFO). Messages from the uncontrolled :;
data stream may or may not not be entered into this queue ?
according to a FIFO discipline (see Uncontrolled ?E
Transmission). gi

AR o s

!
()
~

I

A5,

i

{ % Transmission Control

{
T

Yy P SO

i Channel Interface Flow Control: a channel machine and an SAPI

communicate viaﬂ the channel interface. Flow control -must be
provided across this interface to prevent the SAPI from
floodinhg the channel machine and vice-vérsa. 1In the model of
the interface described in this specification, the s_ready and
ci_ready events provide flow control across the channel

interface. The s_ready event indicetes to the channel machine

the number of ci_transmit_c events the SAPI is able to accept.
i Similarly, the ci_ready event indicates to the SAPI the number

of s_transmit_c events the channel machine is able to accept,

Receiving Queue: since the channel machine may send data to

the SAPI faster than the SAPI can accept it, flow control is

required across the channel interface. Therefore, the channel

machine has a queue for events waiting until the channel
interface flow control allows them to be sent to the SAPI.
Events from the controlled data stream are entered into the
queue first in first out (FIFO). Events from the uncontrolled
\ data stream may or may not be entered into this queue

according to a FIFO discipline. (See Uncontrolled

Transmission).

- 28 -

B

KL

3

Transmission Control

,“ﬂ ®
e
Lo
[
ek
S
kS
&
;
]
i
" +
.
1
;
M ! » N
B T e T T srrprte e e

BLANK PAGE

29

Transmission Control -

(\right edge

-

left e'dgeq
. window

-l

duplicates acceptable messages not yet acceptable

Cnedi t -

-t
last AchedJ LMax acceptable

next message

Figure 5a: THE MOVING WINDOW MODEL

left edgew (‘right edge

nessages
f-received but
not yet Acked

| .

duplicates

- Credit extended >

1
1
!
1
i
last Ack sent) + {/Max acceptable

last Seq received

Figure 5b: s_window

v pagew (\right edge

H
[]
messages i Credit still
if~sent but —P~tf— available —P»
not Acked

S T LT T Y rereps Sl

last Ack receiveL} * tMax to send

last Seq sent

Figure 5c: r_window

N AP

LI

Transmission: Cohtrol ’

Controlled Transmission Procedures

The Moving Window Model: the mechanisms used 1in the Channel

Protocol for preserving message order, detecting duplicates,
and controlling data flow are btased on the moving window
model, In this model, a window is seen to be sliding along
the sequence number line (see Fiqure 5a). 9nly messages whose
sequence numbers are within the window are acceptable.
Sequence numbers less than the left edge of the window denote
messages that have already been acknowledged. The left edqge
itself denotes the sequence number of the last in-order
message received. The width of the window denotes the amount
of Credit currently extended to the sender, i.e., the number
of messages which the receiver is currently willing to accept.
Sequence numbers greater than or equal to the right edge of
the window denote messages that are not yet acceptable because

they are beyond the receiver's current ability to accept them,

For each direction of data flow, there are two windows (see
Figures 5b and 5c¢), one maintained by the sender (the
"s_window") aqd one maintained by the receiver {the
"r_window"). Data flow 1is controlled by the receiver. The
receiver's r_window represents the receiver's image of the
state of the data flow: the last message acknowledged by the
receiver and the amount of Credit extended to the sender. The
sender's s_window represents the sender's image of the
receiver's r_window: the last acknowledged message and the

amount of Credit the sender has been notified of. Recause of

SMOPUTM I pue S HIIM SANIHOVW TANNYHD 9 2anbTJg

b (W™ S)
’ 13puss se

(o d)

JIIATODBI Se

_ Mmoputm s — _ mopuTM I —
.M MOPUTHM X nopuUIM S
-
Mv”) e3ep
C k¥
G
o
A
s,
)]
ot
g
[}]
ot
1s}
3 -~ -
()] (W ¥) (K3 S)
I3ATODOI Se 29puas se
INIHOVHNH TINNYHD INIHOVHW TINNYHD
BT Ry A - - -

ﬂ ,
5 2N PP U e I 50945 < AN i sttt sutspemmetet et g

32 ~

‘Transmission Control

messages in transit or messages lost, thé sender's s_window

may not agree with the receiver's r_window.

Since data can flow in both directions, each channel 'machine
maintains both an r_window and an s_window (see Figure 6).
For a receiving channel machine's r_window ("an R CM's
r_window"), the 1left edge represents the sequence numbher of
the last acknowledgement sent to the sending channel machine
("the §_CM"). The right edge of the R_CM's r_window is
computed by adding together modulo 16 the last amount of
credit extended to the 5 _CM and the value of the left edqe.
This gives the largest sequence number that the R CM is
currently able to accept. Since the R_CM may receive several
messages before it can acknowledge the first, the R_CM must
keep track of the sequence number of the last message it has
received. For an S CM's s _window, the left edge represents
the sequence number of the last acknowledgement received from
the R_CM. The right edge is computed by adding together
modulo 16 the Credit and Ack field of the last message
received from the R_CM. This is the largest sequence number
that the S_CM should send. Since the S _CM may send messages
in advance of those that are acknowledged, the S_CM must keep

track of the sequence number of the next message to be sent.

Duplicate Detection: duplicate Transmit_Commands may be

introduced into the controlled data stream by retransmissions.
If a Transmit_Command arrives at the R_CM with a sequence

number less than the value of the left edge of its r_ window,

21

T e s .

Ea)

e .o
(ot

N

Transmission Control.

the Transmit Command 1is a dqpliﬁate. The .duplicate is

discarded and the S CM Is not notified.

Ordering: Transmit_Commands may arrive out—éf-order, due to
events at the 1link 1level or due to retransmissions. If a
Transmit_Command arrives with a sequence numher more than one
greater than the left edge of the R_CM's: r window, the
Transmit_Command is out of order. The R_CM may Kkeep the
message if it has sufficient buffer space or it may discard
it. In either case, the R_CM should send a Transmit_Response
to the S CM indicating that an out-of-order message was
received (Status = 35) and with the Ack field set to the value
of left edge of the R_CM's r_window, This will cause the S_CM
to retransmit all Transmit_Commands from the sequence number
of the Ack field 1in the Transmit_Response to the sequence

number of the last message sent by the S_CM.

Flow Control: flow control must be provided bhoth at the

channel interface and between apposite channel machines. The
channel interface events s_ready and c¢i_ready are wused to
control flow across the channel interface for a particular
channel. The s_ready event indicates to the channel machine
the number of ci_transmit_c events the SAPI is able to accept.
The ci_ready event indicates to the SAPI the number of
s_transmit_c events the channel machine is able to accept. 1t
is assumed that events are not lost between the SAPI and the
channel interface. The number of «¢i_transmit ¢ or

s_transmit_= events allocated by each additional s _ready or

- 34 -~

{
Ly

Transmission-Control:

ci_ready event replaces the previous allocation.

Note: this particular channel interface model should not bhe
viewed as an implementation specification. The channel
interface model only specifies the properties that a channel
interface must have, Many mechanisms may satisfy these
properties.

When a channel machine receives a message from its apposite,
it uses the Ack and Credit fields to update its s_window. The
left edge of the s _window is set equal to the Ack field. The
right edge is set equal to the sum modulo 16 of the Ack field
plus the Credit field. The channel machine can now send
messages to its apposite as 1long as the sequence humbers

assigned are less than the value of the right edge of its

s_window.

When a channel machine receives a Transmit_Command that is in
order and not a duplicate, it advances the left edge of the
r_window by one (modulo 16). It acknowledges this message
(thereby acknowledqging any others that have not heen
acknowledged as well). No more than 8 unacknowledged messages
can be left outstanding. If the width of the r_window is near
zero and the channel machine has sufficient allocation to pass
data on to its SAPI, additional Credit should be extended to

the sending channel machine.

Communicating Flow Control Information: although the

controlled data stream consists solely of Transmit_Commands,
other channel protocol messages carry flow control

information. This section provides a table of the values of

Transmission .Control

v BE e Y A—— e SRR % A

Begin_Command

Begin_Résponse:

Execute_Command:

Execute_Response:

: Transmit_Command:

Transmit_Response:

End_Command:

T 4 N

Seq:
Ack:
Credit:

Seq:
Ack:
Credit:

Seq:

Ack:

Credit:

Seq:

Ack:

Credit:

Seq:

Ack:

Credit:

Seq:

Ack:

Credit:

| thé Seq, Ack, and Credit gields in these meséages.

field used for Service Codé
field used for Service Code
specifies the initial credit
to the recéiver

Zero

Zero

specifies the initial credit
tc the receiver

specifies the sequence number
of the last Transmit_Command
sent

specifies the sequence number

of the last in order
Transmit_Command correctly
received

specifies the new credit
value

specifies the sequence number
of the last Transmit_Command
sent

specifies the srquence number

of the last in order
Transmit_Comnand correctly
received

specifies the new Credit
vdlue

specifies the sequence number
of this Transmit_Command
specifies the sequence number

of the last in order
Transmit_Command received
correctly

specifies the new credit
value

specifies the sequence nuaber
of the last Transmit_Command
sent

specifies the sequence number

of the last in order
Transmit_Command received
correctly

specifies the new Credit
value

specifies the sequence number

bt

JE———

End_Response:

Ack:

Credit:

Seq:

Ack:

Credit:

Transmission :Control

<

of the last Transmit_Command -

sent

specifies the sequence number
of the last Transmit_Command
correctly received before the
channel was terminated
irrelevant

specifies the sequence number
of the last Transmit_Command
sent

specifies the sequence number
of the last Transmit Command
correctly received before the
channel was terminated
irrelevant

NS

M AT S b e e N L . s -
Smese—" - ;W"-W

Transmilission Control

NOISSIWSNYIL JdITIOJLNOONN ANV AITTIOYINOD A0 NOILOVNIINI :f 2aIndTdg

BODNG pPUBS,

-

~aet 7 \ pParIoIjuos
- :

poioIzUoDUn

~

22ZIUOI cuc>¢7

vmuﬁonucool/

a31poax® i

SNIBN, IATIDIY

pPaIioI3UOD

patioI3UodU

&nounuckym 3X 23Tpoaxy 31—~

~

3

payToazuolun

fI0Mm)1 9N

UOTIUDIZVY 31

SUIYORBIN [oUuU®BUD

YT ————

-~ 38

IdV S

— =

I copmyrri AP} v saspeus S04
oy ~

e s i ey

e

J—— “ et o v ot st - puo— P T e y——

Transmission Control

Uncontrolled Transmi'ssion

The channel protocol implementation provides an
uncontrolled data strean to apposite SAPIs. The
uncontrolled data stream does not guarantee that order will
be preserved, nor does it provide flow control. The
uncontrolled data stream provides a means to expedite data
transfer with respect to the controlled data stream. 1In
addition, an "attention" to interrupt the SAPI can be
associated with the expedited message. The uncontrolled
data stream also provides a means to synchronize delivery
of data in the uncontrolled data stream with the controlled
data stream. Similarly, an attention to interrupt the SAPI
can be associated with the synchronized message. The
uncontrolled data stream 1is provided in the channel
protocol by the Execute_Command and the Execute_Response.
Figure 7 shows the interaction between controlled and

uncontrolled transmission.

Expedited Data Flow: an Execute_Command may be sent with

the Synchronize bit of the Control field set to zero. 1In
this case, delivery of the Execute_Command is expedited.
This means that the Execute_Command is placed at the head
of the Sending Queue for delivery to the link level, When
the Execute Command arrives at the receiving channel
machine its TEXT is placed at the head of the Receiving
Queue for delivery to the SAPI.

Note: Whether or not Execute_Commands are expedited by the

- 39 -

S e Tt T r— W
3 " i

LY AN

Transmission Control

link protocol implementation depends on the facilities
provided by the link protocol. The channel protocol does
not require that the 1link l&vel provide -this facility;
however, it would be useful if available.

The Attention bit of the Control field of an expedited
Execute Command may bhe set to cne. If the Attention bit is
set, the receiving channel notifies the SAPI via an
attention or an interrupt when the TEXT of the
Execute_Command is placed at the head of its the Receiving
Queue., The attention or interrupt is a special signal to
the SAPI notifying it of important data waiting to be
processed. If the Attention bit 1is set to zero, the
channel machine places the TEXT of the ‘Execute_Command at
the end of 1its Receiving Queue and sends no attention to

the SAPI. In this case the Execute_Command is synchronized

{(see below).

Synchronized Data Flow: an Execute_Command may be sent with

the Synchronize bit of the Control field set to one. 1n
this case, the sending channel machine places the
Execute_Command at the end of its Sending Queue for
delivery to the link level. The Execute_Command is sent to
the apposite channel machine in the normal course of events
and is not expedited., When the apposite channel machine
receives‘the Execute_Command, it places the TEXT at the end
of its Receiving Queue. If the Attention bit 1is set to
one, it immediately notifies the SAPI by an interrupt or an

attention that important data is waiting to be read. The

- 40 -

_ e R R P O

e O

Pt o Pl S .0 § 2 2

©

- Transmissidén Control

‘SAPI should process the queued data as quickly as possible
in order to receive the TEXT of the Execute_Command and act

Note: The effect of the Attention bit is not propagated
ahead of a synchronized Execute Command until it reaches
the Receiving Queue. If such an effect is to be achieved,
the sending SAPI should cause its channel machine to first
send a synchronized Execute_Command with the Attention bit
set, and then to -send an expedited Execute_Command with the
Attention bit set. This will <cause an attention to be
propagated ahead of the synchronized Execute_Command.

Termination

Channels may be terminated in two ways: flushing and non-
flushing. A flushing termination causes all queued data to
be discarded and causes the channel machine to enter a
terminating state. A non-flushing termination allows all
queued data to be sent before causing the channel machine

to enter a terminating state.

Flushing Termination: when a channel machine 1is requested
to perform a flushing termination, it discards all queued
data in both the Receiving and Sending Queues and sends an
End_Command. Any data tht arrives after the End_Command is
sent is discarded. When the End_Command arrives at the
apposite channel machine, all data in its Receiving Queue
is discarded and the SAPI is notified by a channel

interface event.

Pyt re ——— R,

U
1]

W,

ST

e e e

Pransmission Control

Non~flushing Termination: when a .channel machineé is

requested to perform a non-flushing termination, the
channel machine discards all data that was queued in its
Receiving Queue for the SAPI, and enters an‘End_Command at
the end of its Sending Queue. Any data that arrives after
the End;Command has heen entered in the Sending Queue is
discarded. When the last Transmit_Command is sent, the
channel machine then sends the End_Command and enters a
terminating state. When the &nd_Command arrives at the
apposite channel m&chine, it is placed at the end of the
Receiving Queue, The End_Command is not acted wupon until

the last data has been delivered to the SAPI.

Non-Flushing End Deadlock Avoidance

Both of the apposite SAPIs wusing a virtual chanhnel can
simul taneously request non-flushing termination of the
channel, Each channel machine must withhold sending the
End_Command until the data which it has queued for sending
to the other drains out. A deadlock will occur if neither
channel machine can drain its Sending Queue of data for the
other. This deadlock can be avoided by the following

procedure,

If a channel machine is requested to perform a non-flushing

termination, it shall:

et S
k3

B

Transmission Control

1) discard all data queued in its Receiving Queue for
the SAPI that requested the non-flushing
“termination.

2) continue to extend Credit to its apposite CPI
(this allows 1its apposite to drain its Sending
Queue of data toward it); and
3) if the channel machine does receive
Transmit Commands from its apposite, it shall
acknowledge and discard them (since the SAPI has
requested termination, the data need not he passed
to it).
If the above procedure is feilowed, both of the apposite
SAPIs may request non-flushing termination without a

deadlock occurring.

- 43 -

| 3

s ea
D o L e PR »»f\w,.~
;

Transmission Control

‘
4

-
7
<
&
Kd
P
4
/
H

g . . = - ,.-. -

e ——— -~ -

T T T

- e i

Notatidn and Nomenclature Converntions
for the - :
Channel Protocol

Notation

States: all state names are printed with all capital letters. 1If
the state name cunsists of two or more woris, the words are
separated by an v J._recore (_). Examples: NULL, SENDER_PENDING.,
Commands: all Command names are of the form:

<command name>_pommand
where <command name> is one of the following:

Begin

End

Execute

Transmit

The first letter of each word is capitalizea.
Examples: Begin_Command, End_Command.

Responses: all Response names are of the form:
{regponse nhame>_ Response
where <{response name> has the same range as <command name>. The

first letter of each word is capitalized.
Examples: Begin_Response, End_Response.

Events: all names of events caused by the SAPI are either of the
form:

s_<interface event name>_<event suffix>
where <interface event name> is one of the following:
begin

end
execute

- 45 -

T e e e

~kransmit
and <event suffix> is either

) (o] indicating a Command
or r indicating a Response

\ or éf ﬁhe form:
s <interface event name>
where <interface event name> is 5ne of the following:
identify
ready

status

All namés of events caused by a channel machine are either of the
form:

c_<interface event name>_ <event suffix>
where <interface event -name> is one of the following:
begin
end
execute
transmit
and <event suffix> is the same as abhove
or of the form:
c_<interface event name>
where <interface event name> is one of the following:
accept
ready
reject

status

Event names are all lower case. Examples: s_begin_c, c¢_begin c,
s_ready, c_status.

- 46 -

Nomenclature

Valid/Invalid: an invalid Commané or Response is one that has
failed to pass one or more consistency checks performed by the
CPI. Most invalid Commands and Résponses are detected by the

multiplexor/demultiplexor and are handled at that time..

Transmit_Commands may arrive out-of-order or may be outside the
flow control window. These are also Hhandled by the channel
machine and are described in the state table.

Acceptable/Unacceptable: the channel machine checks events for
consistency and accepts or rejects them via the c_accept or
c_reject events.

Status # #: indicates that the Command corresponding to this
Response was not successful., 1t indicates that the attémpt to
establish a virtual channel has failed.

Status = 2: indicates that the channel machine was not in a legal
state to veceive the Command corresponding to this Response.

Status = 39: indicates that the channel machine was in the
SENDER_DRAINING state and discarded the Commund corresponding to
this Response.

Flushing/Non-Flushing: channels may be terminated in two ways:

Flushing: any data queued for transmission is discarded at
the time the termination is requested.

Non-Flushing: the termination request is not acted on until
all data queued for transmission has hbeen sent (see
Termination).

Log the error: if the channel machine detects an error, the error
and any ocher diagnostic information should be written on a
permanent file. In some cases, the error may be reported to the
HFP Maintenance Service.

Channel Machine States

NULL: a channel machine in this state does not have an active
channel.

SENMDER PENDING: a chaanel machine in this state is attempting to
establish a channel. It has sent a Regin Command and is waiting
for a Begin_Response.

- 47 -

-

N -

RECEIVER PENDING: a channél machiné in this state ‘has received a
Begin Command anhd is waiting: for the s_begin r event from the .
SAPT-

‘SENDER TAKING BACK: @ channel machine in ‘this state has been
requested to terminate the channel while it was in the
SENDER_PENDING state and has sent an Fnd _Command before it has
received the Begin_Reésponse.

RECEIVER TAKING BACK: a channel machine in this state has
received an End._Command while it was in the RECEIVER_PENDING
state before the SAPI has responded to the c _begin ¢ event.

ESTABLISHED: a channel machine in this state has established a
channel with its apposite.

SENDER DRAINING: a channel machiné in this state has bheen
requested to terminate the channel without flushing eny data.
The channel machine is sending all queued Transmit Commands
before sending the Enda Respense.

RECEIVER DRAINING: a channel machine in this state has received a
non-flushing End _Command and is waiting until the SAPI has read
all of the data queued for it before sending the End_Response.

SENDER TERMINATING: a channel machine in this state either

1) has heen requested by the SAPI to terminate the channel
and flush any data not yet sent, or

2) has been in the SENDER_DRAINING state, has sent the last
Transmit_Command, and has also sent the End_Command.

RECEIVER TERMINATING: a channel machine in this state either

-

1) has received a flushing End_Command and is waiting for
an s_end_r event from the SAPI, or

2) has been in the RECEIVER_DRAINING state, has passed the
last c¢_transmit_c¢ event and the c_end_c event to the
SAEI, and is now wa1t1ng for the s_ enn r event.

- 48 -

D

COMMANDS AND. RESPONSES

COMMANDS AND RESPONSES

Introduction

The following section defines the channel protocol commands and
Responses., For each Command and each Response, there is a
presentation of:

1, 1its function,

2, when it is sent,

3. the sending channel machine's state table for it,

4, the receiving channel machine's action upon receiving it

a) in the normal case and
b) in case of error,

5. the receiving channel machine's state table for it,
6. any subsequent action by the receiver

a) 1in the normal case and
b) in case of error,

7. any subsequent action by the sender

a) in the normal case and
b) in case of error,

8. the semantics of the fields of the HEADER for this
Command or Response, and

9. the semantics of TEXT for this Command or Response.
The conventions followed in the state tables are given in the

section entitled "Notation and Nomenclature Conventions for the
Channel Protocol."

R - BV TR o T 0 T v S B 48 e £ e AN T e e e e e —
e —— - e o e et areeemeoonm e

BLANK PAGE

- 50 -

Begin_Command

Functlon

o 98 0 A o o o

A Begin_Command is used by a channel machine to request its
apposite to join it in establishing a host to front end
channel.

When sent

When an acceptable s_begin_c event has been caused by an
SAPI, the channel machine sends a Begin_Command.

Sending States

| | | i

CURRENT STATE | INPUT | NEXT STATE | ouTPUT { ‘COMMENT

(SUB-STATE) | | 1 |
............... !---_---_-_------_--;--_--_-_____-__}_-----_--_----_------{_---------------------

|

NULL | acceptable | SENDER_ I c_accept | initialize chanpel
| s_begin_c I PENDING | Begin_Cornand : machine
| ! !

- o | o 0 S e |

Action when received

In the normal case: a channel machine receiving a
Begln Command 1is in the NULL state. The channel machine then
causes a c_begin_c event in order to notify the SAPI specified
by the Service field of the Begin_Command that a channel to it
has been requested and to pass to it the TEXT field of the
Begin_Command. The channel machine then enters the
RECEIVER_PENDING state.

In case of error: the channel machine logs the error (see HFP
Maintenance Serv1ce), discards the message, and sends a
Begin_Response with the Status code proper to the error (see
Status codes for the Begin _Response, below).

Begin. Command

Receiving States

- . " v VS - S p
o e ot P e P B 0 e 8

l
[CURRENT STATE

e e e o e e e e

| | | !]
| INPUT | NEXT STATE | ouTPUT | COMMENT |
| (SUB~STATE) | !] ! 1
DR SO U |I___.____-...._...__ _______ { ______________________ ll
T [[
: NULL | valid | RECEIVER_ | ¢_begin_c | fnitialize channel |
| | Begin_Command | PENDING 1 : machine :
{ e e [, UV SO S
[l I I i !
I any other | Begin_Command | =~ == == | === - I log the error |
) state 1 (valid or]] ! |
] | invalid) | I } |
| S I | S 1
Subsequent action by the Receiver
In the normal case: an s_begin_r event with Status = @0 |is

“ caused by the SAPI in response to the c _begin_c. The channel
1 machine then sends a Begin_Response with Status = # and enters
! the ESTABLISHED state.

In case of error: an s_begin_r with Status # # event is caused
by “the SAPI. The channel machine then sends a Begin _Response
with Status # 0 and enters the NULL state.

Subsequent action by the Sender

: In the normal case: the channel machine, having sent a
‘ Begln Command, waits for a Begin_Response. If the channel
machine receives a Begin_Response with Status = @, it then
notifies the SAPI by causing a c_begin_r event with Status = 0
and enters the ESTABLISHED state.

In case of error: if the channel machine having sent a

i BegIn_ in Command receives a Begin_Response with Status # #, it

e notifies the SAPI of the error via a c_begin_r event with
: Status #¥ 8 and enters the NULL state.

Taking back: An SAPI having requested the channel machine to

establish a channel may, via an s_end_c event, request the
; channel machine to terminate the channel ~hefore it receives
the expected Begin_Response, In this case, the channel
machine then sends an End_Command and enters the
SENDER_TAKING_BACK state.

DA e ¢ A s 5 i s,

i

y . Begih_pommaﬁd

Semantics of fields

Type: @ specifies Begin.
C/R: @ specifies Command.
Credit: specifies the number of Transmit_Commands the sending

channel nmachine is prepared to accept (see Transmission
: -Control). Its value may be zero.

T S ICoas. ~. MR Lo ISR . S

Service: specifies the SAPI to which the channel 1is to be

e e

established (see Message Multiplexing and Demultiplexing).

Group and Member: specifies the channel that 1is ‘to bhe
established.

Control: is currently undefined for the ‘Begin_Command.

Semantics of TEXT

TEXT contains the service access protocol message,

- P SENNTS o ry————————— e —
¥ L. s - e -

n

[N p P’ o ——— e

4

s

R AR SR A S

Begin_Response

Begin_Response

Function

A Begin_Response is used by a

indicate the

channel

machine
successful establishment of a host to front end

either to

channel as requested by its apposite or to indicate the reason

for failure.

When Sent

When an acceptabhle s_begin_r event has been caused by an SAPI,
the channel machine sends a Begin_Response.

Sending States

I | |

| CURRENT STATE | INPUT | NEXT STATE ! QUTPUT

| {SUB=STATE) | : ,

________________ e mmmm e e cmdmad e e

| | | |

| RECEIVER_ | acceptable | ESTABLISHED | c_accept

| PRNDING | s_begin_r | | Begin_Response

| | (Status=0) | } (Status=0)

| R) e e
| | |

| RECEIVER_ | acceptable | NULL | ¢_accept

| PENDING | s_begin_r | | Beyin_Response

1 | (Statusin) | } (Statusy#0)

|) e

1 | | |

| RECEIVER_ | acceptable | NULL | ¢_accept

| TAKING_BACK | s begin_r | | Begin_Response

| | (Status#9) | | (Status¥0)

|

Action When Received

In the normal case: a- channel machine

Begln _Response with Status =

The channel machine then causes a c_begin r event with

receiving a

is in the SENDER _PENDING state,

Status

= @ in order to notify the SAPI that the channel has been
established and to pass to it the TEXT field of the
Begin_Response. The channel machine then enters the
ESTABLISHED state,

In case of error: if a channel machine receiving a

Begln Response with Status # 9 is in either the SENDER PENDING

state or the SENDER_TAKING_BACK state,
Status # 0 in order to pass the TEXT field of the
Begin_Response to the SAPI and enters the

event with

it causes a

NULL

c begln r

state; if a

channel machine receiving a Begin_Response with Status = ¢ is
- 54 -
S i S “f“Wt '''' - L oy et i e S e = T T oo - g e

R

P

R i AR P

ore—-

in the SENDER_TAKING_BACK state, it takes no action and does
receiving a
the
HFP

hot

change

SENDER_TAKING_BACK

Maintenance
inconsistency

in

state;

Service)
the

if a
it

but does

'‘Begin_Response

channel

R —

the
change

logs
not

filter logs 'the errdor (see Message Formatting
HFP Maintenance Service).

Receiving States

CURRENT STATE
(SUB-STATE)

- o o

SENDER_
PENDING

SENDER_
PENDING

- o e e o

SENDER_
PENDING

SENDER_
TAKING_BACK

ot et

SENDER_
TAKING_ BACK

any other
state

valid
Begin_Response
(Status=p)

- 2 Ay

valid
Begin_Response
(Status#0)

o 10

invalid
Begin_Response

valid
Begin_Response
(Status=0)

valid
Begin_Response
(Status#@)

Begin_Response
(valid or
invalia)

NEXT STATE

- 2t e e

SENDER_
TERMINATING

-t o 0 0

- e o

- 2 o S

- e

¢_begin_r
(Status=#)

c_begin_r
(Status?)

¢_begin_r
(Status?a)
End_Command
{£lushing)

o " o g

o g 8 o e

c_begin_r
(Status?a)

- o 90 e o e g

e

Subsequent Action by the Receiver

In the normal case:

its apposite.

In case of error:

either

‘the
state; had it been in any other state, it logs the

does change state.

R

Begin_Résponse

machine
Begin Response is in neithér the SENDER_PENDING state nor
state, error
state;

has been detected, the

(see
if

and Filtering,

]
[
|
!
1
|
]
|
|

e i e e et e T A et S S B e, e T St o (o M et o e B

COMMFENT

70 it e ey

s 00 e

v . 0 2 e e

(2 o o et o

- ot 2 o e e e

B e e R b

an

the channel machine exchanges data with

none if the channel machine had been in
SENDER PENDING state or the SENDER_TAKING_BACK
error but

Begin_Response

i Subsequéent Action by the Sender

¢ In the normal case: the channel machine exchanges data with
its apposite.

In case of error: The chahnel machine returns ,to the NULL
Sstate.

Semantics of Fields

Type: @ specifies Begin.

C/R: 1 specifies Response.

e i i

Credit: specifies the number of Transmit_Commands the sender
of the Begin_Response is prepared to accept (see Transmission
Control). 1If there was an error, the content of this field is

irrelevant.

Seq: is zero. If there was an error, the content of this
field is irrelevant.

Ack: specifies zero as the sequence number of the last message
correctly received. If there was an error, the content of
this field is irrelevant.

Group and Member: specifies the channel which the
Begin_Command requested to be established.

. Status indicates the success or failure of the attempt to
o establish the channel. The following Status codes are
applicable to the Begin_Response:

; Status Meaning

] Command was successful.

1 Channel non-existent: the Group and WMember
fields of the Begin _Command referenced a
channel machine unknown to the receiving :CPI.

2 Illegal state: the Begin_Command referenced a
channel machine which was in a state for which
the Begin Command is an illegal input.

|
} 3 Command not implemented: the Begin_Command is
] not implemented by the receiving CPI.

5 Message too long: the number of bits in the

Begin_Command exceeded the maximum permitted
by the receiving CPI.

- 56 -

Semantics of TEXT

32

33

34

37

38

Begin_Response

Service access protocol message error: an
error in the service access protocol message
contained in the TEXT field of the
Begin_Command was detected by the SAPI.

Channel in use: the channel referenced in the
Begin_Command was already assigned (i.e., not
in the NULL state).

Service not implemented: the Service field in
the Begin_Command specified an SAPI not
implemented at the receiving site.

Insufficient resources: the receiver of the
Begin_Command did not have sufficient
resources for establishing the host to front
end channel.

Bad channel polarity: the high-order bhit of
the Group field in the Begin_Command had the

wrong value,

Service not operational: the Service field in
the Begin Command specified an SAPI which is
implemented at the receiving site but which is
temporarily unavailable,

TEXT contains the service access protocol message,

- 57 -

A ¥ - - S r

End_Command

End_Command

Function

An End_Command is used by a CPI to request its apposite CPI to
join it in terminating a host to front end channel, a group of
channels, or all channels.

A CPI sending an End_Command has two options:

1. it may request that the channel(s) be terminated
immediately ("flushing termination");

2. it may request that the channel(s) be terminated
only after any data queued by its apposite CPI has
been passed on to the apposite CPI's SAPI (s) ("non-
flushing termination").

(For further discussion also see Termination.)

When Sent

When an acceptable s_end_c event has been caused by an SAPI,
its CPI sends an End_Command.

gt N b Mt <t et <

oA

SN B BT iy

Ll

Sending States

l----—--—-——-----,_______--_--_»----_ o

CURRENT STATE | INPUT
{suB-sTaTE) |

acceptable
s_end_c
(€flushing, from
HFP Maintenance
Service)

acceptable

or non-flushing)

SENDER__ invalid

RECEIVER acceptable
PENDING s_end_c (flushing
or non-flushing)

| acceptable

s_end_c¢ (£lushing

TAKING _BACK | s_end_c (flushing |

| of non-flushing}

RECEIVER_ | acceptable

TAKING _BACK | s_end ¢ (flushing

|
|
I
l
l
]
| SENDER_
]
I
|
1
|
|
{

| or noa-flushing)
[

| acceptable
| s_end ¢

| (£lushing)
|

r non-flushing)

)
f
]
[l
1
)
]
]
1
1
1
]
§
]
i
L3
¥
)
]

|
i |
| ESTABLISHED | acceptadble |
| (with data | s_end _c (non- |
l queued for | flushing) |
! apposite 1 |
I cPl) | i
| ! i
| } |
I | |
| R o]
i | |
i ESTABLISHED | acceptable |
I (with no | s _end ¢ (non-)
| data queued | flushing)]
1 for | |
| ¢pposite | |
1 CPy, | 1
| e mm— . |
| | |
I SENDER_ | acceptable |
1 DRAINING | s end_¢ |
] | (flushing) |
| e —m———— | N cmem—m—— l
1 | i
| SENDER_ | (acknowledgement
| DRAINING | of last Transmit_ |
I | Command I
| e T D i
| | |
I RECEIVER_ [acceptable 1
| DRAINING | s_end_c¢ (flushing |
| | or aon-flushing) |
| | o I
| | 1
| SENDER | acceptable 1
| TERMINATING [s end_c (flushing |
| l o

|

l

RECEIVER | acceptable

1
|
I TERMINATING | s end ¢ (flnshing
|

| or non-flushing)

|
NEXT STATE : oUTPUT
______ ST N
|
----- | ¢_accept
| End_Command
: (£lushing)
| .
e ————— S e —————
|
SENDER_ I c_accept
TAKING_BACK | End_Command
; (£lushing)
|
SENDER_ | c_begin_r
TERMINATING | (Statusyd)
| End_Command
: (flushing)
1
NULL | c_accept
| End_Command
: {£1Ushing)
|
----- | c_accept
| End |_Command
| (£lushing)
|
——— R B “————— -
NULL | c_accept
I End Command
| (flishing)
|
|
| SENDER_ | ¢ accept
TERMINATING | End_Cemmand
: (£lushing)
- |==m===- mmm————
SENDER_ | ¢_accept
DRAINING }
1
|
|
1
|
_____ e e
I
SENDER_ | ¢_accept
TERMINATING | End _Command (non-
: flushing)
I
|
______ e e ———
|
SENDER_ | ¢ accept
TERMINATING | £ind_Command
I (flushing)
______ S U
|
SENDER_ | End_Command (non-
TERMINATING | flushing)
|
- R,
|
NULL | ¢ accept
| End_Command
= (flushing)
|
————— | c¢_accept
| ERAd_Command
| (£flUshing)
e ————— S, e m—m e ————
|
NULL 1 ¢ _accept
| End_Command
| (flushing)
e mmmmm e m e ————
- 59 -
e Bim -j.ﬁ. K]

End~Command

| data

|
|
| discard any data
| queved for SAPI;
| send data to

| apposite CPI; nlace
| End_Comnand (non-

| flushing) at end of
| send queue;

| acknowledge but

I
| Aiscard any data |
| queurd for SAPI; 1
| acknowledge but |
| discard any inconing |
| messaqes

1
discard any Aquened |
data 1
|
|

discard any queuned
data

e o A AV e Taite R e P i, P s i W M. St e o M o Sk v o

T emat

TR

e e i o T ARSI 115

s

O

we s

 eo———

End_Command

Action When Received

In the normal case: a channel machine receiving an End_Command
Ts “in either the SENDER_PENDING state, the ESTABLISHED state,
the SENDER_DRAINING state, or the SENDER _TERMINATING state.
If the End _Command specifies a non-flushing termination, the
channel machine first waits until any data queued for the SAPI
has been read by the SAPI (see Non-Flushing End Deadlock
Avoidance). If the End_Command specifies a flushing
termination, the channel machine discards any data queued for
the SAPI. The channel machine then causes a ¢_end_c event in
order to pass the TEXT field of the End_Command to the SAPI.
The channel machine then enters the RECEIVER_TAKING_BACK state
if it had been in the RECEIVER_PENDING state, the
RECEIVER_TERMINATING state if it had been in the
RECEIVER_DRAINING state, or the NULL state if it had been in
the SENDER_TERMINATING state.

In case of error: the channel machine logs the error (see HFP
Maintenance Service), discards the message, and sends an
End_Response with the Status code proper to the error (see
Status codes for End_Response, below) .

- 60 -

P

SRRy

e i

s g S i R

Receiving States

| CURRENT STATE
| (SUB-STATE)

|

| SENDER_

| PENDING
|

|

|

RECEIVER_
PENDING

RECEIVER__
PENDING

SENDER_
TAKING_BACK

RECEIVER_
TAKING_BACK

ESTABLISHED

- B

!
]
|
|
|
|
: RSTABLISHED
|
!
i
!
|

(with data
quened for
SAPI)

|

| ESTABLISHED

| (with no

| data queued
I for SAPI)

| SENDER_
| DRAINING

- -

| RECEIVER_
{ DRAINING

|7 ——————-
I SENDER_

| TERMINATING
|

|

SENDER_
TERMINATING

RECEIVER__
TERMINATING

! ! |

| INPUT | NEXT STATE | ouTPUT

| | |

SRR | D

| | !

| End_Command b --=-=- | End_Response

| (valid or 1 I

| invalid, flushing | |

| or non-flushing) | |

O S e —

] ! I

| End_Command | NULL | ¢_end_c

| (valid or | | End_Response

| invalid, flushing I |

| or non~flushing) | |

[DO —

| | I

| valid End_Command | RECEIVER_ | c_end_c

| I TAKING_BACK |

Y S e | e e -

| i |

| invalid | NULL | ¢c_end_<

| End_Command | | End_Response

SO S e e ——

I I !

| valid End_Command | NULL | ¢_end_c

| | | End_Response

em—————

| ! |

| valid End_Command | NULL | ¢_end_c

! | | End_Response

I nemm———————— OO ——————

| | |

| valid End_Command | RECEIVER_ I c_end_c

| (£lushing) | TERMINATING |

! [|

D | ———— S P e cm———

l l |

| valid End Command | RECEIVER_ | ===

I {non-flushing) = DRAINING =

| ! |

! | |

| 1 |

| | |

S, | N m————

| | |

| valid End_Command | RECEIVER_ | c_end_c

| (non-flushing) ! TERMINATING |

| ! !

| |]

I | i

I I

| { |

| invalid | NULL | c_end ¢

I End_Command | | End_Response

| (flushing or | |

{ non~flushing) | |

SN [R

] | |

| valid End_Command { NULL | ¢ end_c

| (flushing) | | End_Response

. ——— ——— | - ———

| ! |

| valid End Command | RECEIVER_ ! ¢ end ¢

| (flushing) | TERMINATING |

RS SO b e ———

| | |

| valid End_Command | NULL | c_end_c

| (flushing or | |

| non~flushing) | |

SRS D | e——————

l] i

| invalid | NULL | ¢_end_c

| End_Command | | End_Response

ST

" | I

| valid End_Command | NULL | c_end_c

| (flushing or 1 | End_Response

| non-flushing) | |

S e S | [
- 61 -

T, e Y i WA e = T T

I
|
!
|
I
|

|
|
|
1

End_Command’

discard any data
queued for SAPI and
for apposite CPI

discard any data
queued for apposite
CPI; place c_end ¢
at end of receive
queue; acknowledge
but discard any
incoming messaqges

-

discard any data
quened for apposire
CPI; acknowledge bat
discard any incoming
messaqes

queuned

quened

Ny e

End_Command

Subsequent Action by the Receiver

In the normal case: a s_end_r event with Status = ## is caused
by the SAPI din response to the c_énd_c event. The channel
machine then sends an End_Response with Status = 0 and enters
the NULL state.

m me crrr o e+

In case of error: a s_end r event with Status # f is caused by

the SAPI. The channel machine then sends an End Response with
Status # & and enters the NULL state.

Subsequent Action by the Sender

In the normal case: if a non-flushing termination was
specified, the channel machine continues to acknowledge
Transmit_Commands, to extend flow-control Credit, to act upon
any flow-control information contained in in~coming Commands
or Responses, and to discard any incoming Commands or
Responses until it receives an End_Command or an End_Response.

In case of error: the channel machine notifies the SAPI of the
error via a c_end_r event with Status # @ which passes the
TEXT field of the End _Response to the SAPI. The channel
machine then enters the NULL state.

Semantics of Fields

Type: 4 specifies End.

C/R: @ specifies Command.

e e ran e g oot f——

Credit: is irrelevant.

Seq: specifies the sequence number of the last
Transmit_Command sent by the sender of the End_Command.

Ack: specifies the sequence number of the last
Transmit_Command correctly received before the channel was
terminated.

Group and Member: specifies the channel(s) to be terminated.
If Group is not zero and Member is zero, all channels with the
same Group are to be terminated., If both Group and Member are
zero, all channels are to be terminated. The latter option is
intended as part of the restart sequence (see Initializing
Host - Front End Communication).

Control The Control field bits have the following meanings:

3 - 62 -

e P i A g 4 4o o a e n - e Ca s mhea et e e [P

s i e onn -

End_Conmmand

Flush away: (bit 1 = 1) means immediately flush data
which is queued going away from the sender of the
End Command and terminate the channel. If this option
is Tnot requested (i.e., if bit 1 = #), the End_Command
is not to take effect until all data queued going away
from the sender of the End_Command has been processed in
the normal manner.

Semantics of TEXT

TEXT contains the service access protocol message.

-~ 63 -

e LRSS - e el At e

I

N ———— i s i

AL, Aot b o

Lna_Kesponse

End_Response

Function

An End_Response is used by a channel machine to acknowledge to
its apposite that a channel, group of <channels, or all
channels have been terminated as requested by its apposite.

When Sent

When an acceptable s_end_r event has been caused by an SAPI,
its CPI sends an End_Response.

o= SO - [u— e e e ey e et e =

Sending States

&LNno_Kesponse

i jTTTTTTTTmT T ! T |TTTTTmTmT T |7 J
4 | CURRENT STATE | INPUT | NEXT STATE | ourpuT | COMMENT |
l (SUB-STATE) | i ! l |
| | P T e e |
| | i | ! |
i | NULL | acceptable | == === | c_accept | |
| | s_end_r (from HFP | | End_Response | I
| | Maintenance | I I |
| | service) | | | I
S R e S e mm e oo |
| | | | | I !
: | NULL | End_Command [=== == | End_Response | discard the message |
| | | (valid or 1 1 i 1
'] | invalid, flushing | | |]
(! | or non-flushing) |] | I
' S ——— I JURTY D, ——— b e |
' | !] | I |
‘ | SENDER_ | End_Command | NULL | ¢c_end_c 1 1
I PENDING | (vaTid or | | End_Response | I
! | invalid, flushing |] | i
| } or non-flushing) | |] 1
—— | DR N D —————— .
] ! { ! ! !
| RECEIVER | invalid | NULL | c_end_c | loq the error 1
| PENDING ! End_Command [| End_Response] |
O SY FE U, e | e N P ccmm———m ———— |
I | ! | |
| SENDER_ | valid End_Command | NULL I c_end_c | |
| TAKING _BACK | | End_Response l |
} e ———— D FUU R | — ——————— S r———— .
! | |] |
] RECEIVER_ ! acceptable 1 NULL l ¢_accept]]
I TAKING_BACK | s_end_r | | Bnd_Response 1 |
O TR D S S e —————— -
! l I ! | i
‘ | RECEIVER_ | valid End_Command] NULL | ¢_end_c | I
, i TAKING_BACK | | End_Response | I
; | e eem————— S ee—————— | e c—————— S I |
| | | | | |
i | ESTABLISHED] invalld I NULL | c_end_c 1 log the error 1
: I | End_Command | | End_Response | |
| | (£flushing or | | | |
! | non-flushing) | I | |
| ——————— D S | S e ———————— |
! | ! l !]
| SENDER_ | valid End_Command | NULL | c_end_c | discard any data 1
{ DRAINING | (flushing) | | End_Response | queued |
e —————— ——— S e e |
| !] | | i
I SENDER_ I iavalid | NULL | c_end ¢ | log the error 1
! TERMINATING | End_Command ! | End_Response ! |
————— | e | ———— Y . ——————— ol
1 1 | ! 1 |
| RECEIVER_ | acceptable | NULL | ¢c_accept | |
| TERMINATING | 5_end_r 1 | End_Response | I
oo e —— | e —— | e e S m—e——— ———— l
| | | | | !
1 RECEIVER_ | valid End Command | NULL | c_end_c) 1
I TERMINATING | (flushing or 1 | End_Response] i
1 1 | non-flushing)] | | |
5 S, S !
]
- 65 -
s W e T et s e T e - T e T T e e e

Pl

e e et s

B e T TS

BN

4 _Response

Action When Received

In the normal case: a channel machine receiving an
End_Response 1s In either the SENDER_TAKING BACK state or the
SENDER_TERMINATING state. The channel machine then causes a
c end r event in order to pass to the TEXT field of the
End_Response to the SAPI. The channel machine then. enters the
NULL state.

In case of ercor: the channel machine is to log the error (see
HFP Maintenance Service) and, if appropriate, cause a c_end_r
event in order to pass the TEXT field of the End Response to
the SAPI, 1In either case, the channel machine then enters the
NULL state.

Receiving States

- e | e i O

O 0 o T S - -

| | | |
CURRENT STATE } INPUT | NEXT STATE | OUTPUT | COMMENT
(SUB-STATE) | | | | i
______________ e mmmmee b e e e
| | | | |
NULL | End_Response : ----- | == === : discard the message :
______________ SNSRI JEU U UVRY SOt I
| | | | |
SENDER | valid | NULL | c end r | 1
TAKING_BACK | End_Response : ; : :
_________ b e cmmmmmmme e m e e em e
""" | [I I I
SENDER_ | valid | NULL | c_end_r] |
TERMINATING | End_Response | | 'I 'l
______________ S F T ST BT
| | | | |
any other | End_Response | == === | === == | log the erxor |
state | (valid or | | | |
| invalid) | | | |
| i | | |

e 1 | | - 0 4 > ok s 0

Subsequent Action by the Receiver

In the normal case: none.

In case of error: none.

Subsequent Action by the Sender

In the normal case: none.

In case of error: the channel machine 1logs the error and
enters the NULL state.

L b 8 o R ke T W A SNy g,
Ao ot

ORI

Semantics of Fields

End_Response

Type: 4 specifie
C/R: 1 specifies
Credit: is irrel

Seq: specifies
Transmit_Command

Ack: specifies
Transmit_Command

Group and Member

s End.
Response.
evant.

the sequence number of the last
sent by the sender of the End_Response.

the sequence number of the last
sent by the sender of the End_Response.

: specifies the channel(s) referenced in the

End_Command.

Status: indicat

es whether or not an error has heen

encountered. The following codes are applicable to the

End_Response:
Status

0
1

Meaning
Command was successful.

Channel non-existent: the Group and Member
field of the End _Command referenced a channel
machine unknown to the receiving CPI.

Option not implemented: a Control field option
was specified in the End_Command which is
legal but not implemented by the receiving
CPI.

Message too long: the number of bits in the
End_Command exceeded the maximum permitted by
the receiving CPI.

Service access protocol message error: an
error in the service access protocol message
contained in the TEXT field of the End_Command
was detected by the SAPI.

Illegal Control field value: the Control

field of the End_Command contained an
undefined value.

- 67 -

WO

it i * e o

o

End_Response

Semantics of TEXT

TEXT contains the service access protocol message.

T R R

e e e T e e e b bt o e A B o s e

-

txecute_Command

Execute_Command

s

Function

An Execute_Command is used by a channel machine to effect the
transfer of data over a channel to its apposite without the
guarantees of flow-control and order provided via
Transmit Command (see Overview, Transmission Control).

e w1 mn i, S 4T I

An SAPI requesting a channel machine to send an
Execute 'Command has three options:

1. it may request that the Execute_Command be delivered
asynchronously vis-a-vis the flow-controlled, in-
order data stream,

2. it may request that the Execute_Command be delivered

in synchronization with a specified point in the
flow-contrslled, in-order data stream;

3. in either case, it may request that the

Execute_Command carry with it a request that its
apposite SAPI be notified of its arrival.

When Sent

When an acceptable s_execute_c event has been caused by an
SAPI, the channel machine sends an Execute_Command.

Sending States

et Tt i e B
| CURRENT STATZ

| | ! !
| | NEXT STATE | ouTPUT | COMMENT |
{ (SUB~STATE) | ! | | !
| S S S SR SO |
: | ! ! | l |
‘ | ESTABLISHED | acceptable | === == | c_accept | place |
! ! I s_execute ¢ | | EXecute_ Command | Execute_Command at
; : % (synchronize) i : [end of send queue |
b e e e e | e e |
‘ ! 1 i !] |
f | ESTABLISHED | acceptable | =~ ==== | ¢ _accept | place |
! I | s_execute_c | | Execute_Command | Execute_Comnand at |
: | | (Sxpedite) | 1 | B]
! I I ! I [I

head of send queue

- 0 0 0 | 2 o o R B e e B A o i o o o i e | o 8 T o R 1t T g o

arse S

s ot % AR e Vi bkind 3 i, e bty = e - = e - . -
T R PN e e o

e e i

caer AT

e e s e = e o

S ——— —te

Execute_Command

\

Action When Received

In the

normal

case:

Execute Command

1S

the

in the

channel

ESTABLISHED

machine

Synchroﬁize bit is not set, the channel machine

at the

pass the TEXT field of the
i.e.,
Synchronize bit is set,
Execute Command

SAPI,

received.
immediately via the a system specific attention or out-of-band

signal.

earliest opportunity, a ¢ execute ¢ event in order to

ahead

at

of

Execute Command directly
any other data queued for it.
the channel machine will
the point in the data stream where it was
If the Attention bit is set, the SAPI

is

In case of error: the channel machine logs the error (see

Malntenance

Service),

discards

the

message,

and

receiving an

state. If the
then causes

to the

If the

deliver the

notified

HFP

sends an

Execute_Response with the Status code proper to the error (see
Status codes for Execute_Response below).

Receiving States

= e O

CURRENT STATE
(SUB-STATE)

-

- g

- o

5

- g

SENDER_
DRAINING

any other
state

N 0 8 T o o e e o o et e

- = -

- 0

valid
Execute Command

(synchronize)

- o o

valid

Execute Command
(synchronize,
attention)

R i

valid
Execute_Command
(expedite)

s O W v e e g

valid
Execuce_Command
{expedite,
attention)

- o e

valid
Execute_Command

-

- - - = -

Execute _Command
(valid or
invalidg)

- =

T

v

- 4

Execute_Response
(Status=39)

- 2 Tt e ey

T

0

place ¢ _execute_c¢ at
erd of Yecelve Gueue

notify SAPI of
attention, place

-

¢ _execute_c at end

of receive queue

- = > -

place ¢_execute_c¢ at

head of receive
queue

- - v . -

notify SAPI of
attention, place

¢_execute_c at head

of receive queue

acknowledge but

discard the nessage

ot et T i o o e

o - v ot o T ey A R Y e D 0 o e W

e 4

(O T ¢ hee W ot 4 s S i

nxecuiLe ommana

Subsequent Action By the Receiver

In the normal case: an s_execute_r event with Status = @ |is
caused by the SAPI in response to the ¢ execute c event. The
channel machine then sends an Execute Response with Status =
g, and continues to exchange data with its apposite.

In case of error: a s_execute r event with Status ¥ 0 is
caused by the SAPI. The channel machine then sends an
Execute_Response with Status # @ and resumes data exchange

with its apposite.

Subsequent Action by the Sender

In the normal case: the channel machine continues to exchange
data with its apposite.

In case of error: if the channel machine receives an
Execute_Response with Status # @, it notifies the SAPI of the
error via a c_execute_r event with Status # 0 and resumes data
exchange with its apposite.

Semantics of Fields

Type: 3 specifies Execute.
C/R: @ specifies Command.

Credit: specifies the number of Transmit_Commands beyond the
number specified by the Ack field, which the sender of the
Transmit_Response is prepared to receive.

Seq: specifies the sequence number of the last
Transmit_Command sent by the sender of the Execute_Command.

Ack: specifies the sequence number of the last in-sequence
Transmit Command correctly received by the sender of the
present Execute_Command.

Group and Member: specifies the channel over which the
{ Execute_Command is to be sent.

Control: the Control field bits have the following meaning:

Bit
g123 Meaning

gooo Place the Execute Command at the head of the
data queue.

- 71 -

Execute_Command

e e o e e s v s B [PTRHSIR AT

1600 Place the Execute_Command at the head of the
data queue. Notify the SAPI of the Attention.

OBl Place the Execute Command at the end of the
data queue.

10491 Place the Execute Command at the end of the

data queue. Notify the SAPI of the Attention.

Semantics of TEXT

TEXT contains the service access protocol message.

- 72 -

;
L

e e i e O S

Execute Response

Execute_Response

Function

An Execute Response is used by a channel machine to effect the
transfer of data to its apposite in response to an
Execute_Command. Like the Execute_Command, the
Execute Response 1is not subject to flow-control and order
guarantee.

When Sent

When an acceptable s_execute_r event has been caused by an
SAPI, the channel machine sends an Execute_Response.

Sending States

o

head of send queue

W A 4 0 T 8 o O ot B 8 |t U Y

|
CURRENT STATE INPUT | NEXT STATE QUTPUT COMMENT
(SUB=STATE) |
__________________________________ U S I
|
ESTABLISHED acceptable J o= === - ¢_accept place
I
|
|
[

valid | = ===
Execute_Command |

SENDER

- Execute Response
DRAINING

(Status=39)

- 8 A 8 B o | e o B T AR S e B e et i e (ko

acknowledqe but

{

|

|

|

|

]

| s_execute_r
I

|

|

|

| discard the messaqe
|

I |
| |
| |
I 1
I |
| |
: Execute _Response | Execute_Response ar
I
| |
I 1
| |
i |
I I

Action When Received

In the normal case: a channel machine receiving an
Execute_Respcnse 1s in the ESTABLISHED state. The channel
machine then causes, at the earliest opportunity, a
c_execute_r event in order to pass the TEXT field of the
Execute_Response directly to the SAPI, i.e., ahead of any
other data queued for it. The channel machine does not change
state.,

In case of error: the channel machine logs the error (see HFP
Maintenance Service), notifies the SAPI of the error via a
c_execute_r event which also passes the TEXT field of the
Execute_Response to the SAPI. The channel machine does not
change state,

Execute_Response

Receiving States

| [|
| CURRENT STATE | INPUT | NEXT STATE | ouTPUT | COMMENT |
| (SUB-STATE) |] | ! f
l___- e e e eem P R, (S !
| | | |] |
| ESTABLISHED | valid | - ==-- | c_execute_r | place c_execute_r at |
| | Execute_Response | I | head of receive 1
| | | | | queue |
I | I | S e e !
| ! | | !]
| SENDER_ | valid 1l -=-=--- | - === | discard the message |
| DRAINING | Execute_Response | I I |
| | e emeeeem]
| [| | l |
| any other | Execute_Response | - - - - -] = === - | log the error |
| state | (valid or | | | 1
| | invalid) | | | |

| | ! | !

Subsequent Action by the Receiver

In the normal case: the channel machine continues to exchange
data with its apposite.

In case of error: the channel machine resumes data exchange
with its apposite.

Subsequent Action by the Sender

In the normal case: the channel machine continues to exchange
data with its apposite.

In case of error: the channel machine resumes data exchange
with its apposite.

Semantics of Fields

Type: 3 specifies Execute.
C/R: 1 specifies Response.

Credit: specifies the number of Transmit_Commands beyond the
number specified by the Ack field, which the sender of the
Transmit_Response is prepared to receive.

Seq: specifies the sequence number of the last
Transmit_Command sent by the sender of the Execute_Response.

Ack: specifies the sequence number of the 1last in-sequence
Transmit_Command correctly received by the sender of the
present Execute_Response.

e N MY

At e gy

[R——

A

5 Metat e

Execute_Response

Group and Member: specifies the channel over which the

Execute_Response 1s to be sent.

Status: indicates whether or not an error has been
encountered. The following codes are applicahle to the
Execute_Response:

Status Meaning

] Command was successful.

1 Channel non-existent: the Group and Member
fields of the Execute_Command referenced a
channel machine unknown to the receiving CPI.

2 Illegal state: the Execute_Command referenced
a channel machine which was in a state for
which the Execute_Command is an illegal input.

3 Command not implemented: the Execute_Command
is not implemented by the receiving CPI.

5 Message too long: the number of bits in the
Execute_Command exceeded the maximum permitted
by the receiving CPI.

6 Service access protocol nessage error: an
error in the service access protocol message
contained in the TEXT field of the
Execute_Command was detected by the SAPI.

7 Illegal Control field value: the Control field
of the Execute_Command contained an undefined
value.

39 Command discarded: the channel machine is in

the SENDER DRAINING or SENDER TERMINATING
state, and has discarded the Execute_Command
without passing it to the service access
level.

Semantics of TEXT

TEXT contains the service access protocol message.

- 75 =

- kg fe Bt s oomm——

LT R % G gt B vy T e : PO O —
? .. . P e —

3 AT

s

| | I]

| CURRENT STATE | INPUT | NEXT STATE | ourpuT | COMMENT |
, i {SUB-STATE) | [! 1 |
, S S, D mm e |
' | i ! ! { i
: | any stata | nop | - -~=-- [== == | discard I
: e e eemem b e | e e e 1

- 76 -

!
l -

NOP

NOP

Function
A NOP is used by a channel machine as a filler when a channel

protocol message does not completely €£ill a 1link level
protocol frame.

When Sent
When a channel protocol message does not completely fill a

link protocol frame, the channel machine may send a NOP as
filler.

Sending States

ot P A 0 o T 0

| ! {
| CURRENT STATE [INPUT | NEXT STATE

|]

I ouTPuUT | GCOMMENT
| (SUB=STATE) | : : : |
Y | e mmmm = e e
l | 1 1 1 1
| any state | any input [o == { NOP }
i |

- 4t o
R e L AT T P L DL
. o | 20 s o 2

Action When Received

In the normal case: the channel discards the NOP.

Receiving States

Subsequent Action by the Receiver

None

Subsequent Action by the Sender

None

Semantics of Fields

Type: S5 specifies NOP,

All other fields are irrelevant.
values,

Semantics of TEXT

None.,

- 77 -

NOP

These fields may contain any

o ———

Transmit_Command

Transmit_Command

Function

A Transmit_Command is used by a channel machine to effect the
flow-controlled, in-order transfer of data to its apposite
(see Overview, Transmission Control).

When Sent
When an acceptable s_transmit_c event has been caused by an

SAPI, the channel machine sends a Transmit_Command (flow-
control permitting).

Sending States

I ! ! I

i CURRENT STATE | INPUT | NEXT STATE | ouTpuT | COMMENT
| (SUB=STATE) | : 'I 'I
e e e e e e mmmmee e e e
! | | |]
| ESTABLISHED | acceptable | === == | c_accept |
] | s_transmit_c 1 I Transnit_Command |
e emeee e e e e e | I
Action When Received

In the normal case: a channel machine receiving a

Transmit Command is in either the ESTABLISHED state or the
RECEIVER_DRAINING state. The channel machine then causes a
c_transmit_c event in order to pass the TEXT field of the
Transmit_Command to the SAPI. The channel machine does not
change state, but does apply the transmission control
discipline (see Transmission Control). Transmit_Commands may
also be received in the RECEIVER_TERMINATING state after a
non-flushing End_Command has been received. (see Termination,
End_Command) .

In case of error: the channel machine logs the error (see HFP
Maintenance Service), discards the message, and sends a
Transmit Response with the Status code proper to the error
(see Status for Transmit_Response below).

- 78 -

[OOSR

Receiving States

Transmit_Command

COMMENT

update flow control

acknowledge but
discard any incoming
messages

| I | |
| CURRENT STATE | INPUT | NEXT STATE | OUTPUT
| (SUB-STATE) | | |
| O | e e
| | | |
I ESTABLISHED | valid Il -=-==- | ¢_transmit_c
| (with data | Transmit_Command | | Transmit_Command(s)
queued for		
apposite i		
CPI)		
		e
ESTABLISHED	valid I - =-==--	c_transmit_c
(with no	Transmit_Command	
data queued		
for		I
apposite		
cpl)		
ESTABLISHED	invalid I ===~	Transmit_Response
} Transmit_Command		(Status#@)
I f		
" I~		
SENDER_	valid	-=-==-
: DRAINING : Transmit_Command : : (Status=39)		
P		
] i		
SENDER_	invalid	-=-=---
DRAINING I Transmit_Command		(StatusyD)
	1	
SENDER_	valia e I ==	
] TERMINATING	Transmit_Command	}
I S		
any other	Transmit_Command	= - - - -
state	(valid or	
] | invalid) | |
I Ve Ve N S
Subsequent Action by the Receiver
In the normal case: the channel machine

receipt

Command or Response it sends, and does not change state.
control

flow

acknowledges

its

of the Transmit_Command via the Ack field of the next

When

credit must bhe extended and the channel machine

has no other messages to send, it sends a Transmit_Response.

In case of error: the channel machine sends a

ransmit_Response with Status # 9 but does not change state.

- 79 -

A e s " e e <t <o

Subsequent Action by the Sender

= ki 4 e e +

PSPPSRI

[

In the normal case: as long as the channel machine has data to
send and flow control permits, the channel machine continues
to exchange data with its apposite.

In case of error: the channel machine logs the error and takes
the appropriate action, resuming data exchange with its
apposite.

Semantics of Fields

Type: 1 specifies Transmit.
C/R: # specifies Command.
Credit: specifies the number of Transmit_Commands beyond the

number specified by the ACK field, which the sender of the
Transmit_Command is prepared to receive,

Seq: specifies the sequence number of this Transmit_Command.

Ack: specifies the sequence number of the 1last in-sequence
Transmit_Command correctly received by the sender of the
present Transmit_Command.

Group and Member: specifies the channel over which the
Transmit_Command is to be sent.

Control The use of this field is undefined.

Semantics of TEXT

TEXT contains the service access protocol message.

- 80 -

Lo

Function
A Transmit_Response is used by a channel machine to pass
transmission control information to 1its apposite (e.g., to
acknowledge receipt of a Transmit_Command, to update flow-
control) or to report to its apposite an error in a

Transmit_Response

Transmit_Response

Transmit_Command received.

When Sent

When a channel machine must acknowledge a Transmit Command and

has no Transmit_Commands
detected in the Transmit_Command, or when flow-control
(see Transmission Control)
machine has no other messages to send,
Transmit_Response.
Sending States
R I R
| CURRENT STATE | INPUT | NEXT STATE ouTPUT
[(SUB-STATE) :
N PSR DOt SO
|]
| ESTABLISHED valia | = =-==-- c_transmit_c
| (with no Transmit_Command | Transmit_Response
| data queued !
| for |
| apposite |
| CPI) |
S S e B
| ESTABLISHED invalid I -=-==- - Transmit_Response
I |
|
|
|
|
|
]
|
1

SENDER
DRAINING

SENDER_
DRAINING

Transmit_Command

N N L LT T e

valid
Transmit Command

invalid
Transmf{t_Command

= " 8w vn

(Statusya)

Transmit Response
(Status=39)

[L L L L T e T

Transmit_Response
(Status#8)

to send, or when an error has heen

Credit

nust be extended and the channel

it sends a

update flow control

e o 7 a0

acknowledge but
discard any incoming
messages

- " - - -

i

e e = GrA————D W €T

Transmit_ Response

Action When Received

In the normal case: a channel machine receiving a
Transmit_Response 1S in either the ESTABLISHED state, the
SENDER_DRAINING state, or the SENDER_TERMINATING state. The
channel machine does not change state, hut does apply the
transmission control discipline (see Transmission Contrel).

In case of error: the channel machine logs the error (see HFP

Maintenance Service), and performs any necessary error-
recovery, but does not change state. If the error was
"message out of order" (Status = 35), the channel machine is
to retransmit all messages up to and including the last
message sent.

Receiving States

a9 i v P om | S A e O Tk A o o D A S O e 0 A 84 A A | A e S e o O T A NP | o S

1]
| CURRENT STATE | INPUT | NEXT STATE | output COMMENT I
| (SUB-STATE) | I 1
SOy S O SO Y DI,
1 | I
I ESTABLISHED valid : ----- | ===~ = =

]
|
update flow control; |
loq any error |

|

- i o 2 | o 0 et e e) e 0 e | et Y S A S

|

| SENDER_ valid [wmm - | - === update flow control |
I DRAINING |
VU SO SRS U |
! | | |
| SENDER_ valid | ==-=-=- | === == update flow control |
| TERMINATING | Transmit_Response : : :
|l] e e mmmmm e e e
[I I

[any other Transmit_Response | - - - - - R loq the error

| state (valid or

i

|

|]
invalid) l }

e e o i o R R | R R o e e 90 0 R = R e W

-3
-
o
=1
7
3
-
[
1
P
[+
w
el
Qo
=
il
o

Subsequent Action By the Receiver

In the normal case: the channel machine continues to exchange
data with its apposite.

In case of error: the channel machine resumes data exchange
with its apposite.

o nmar i

PN L

Transmit_Response

Subsequent Action by the Sender

In the normal case: the channel machine continues to exchange
data with its apposite.

with 1ts apposite. (TIf the channel machine encounters a high
frequency of erroneous Transmit Commands some special action
may bhe required.)

In case of error: the channel machine resumes data exchange

Semantics of Fields

Type: 1 specifies Transmit.
C/R: 1 specifies Response.

Credit: specifies the number of Transmit_Commands beyond the
aumber specified by the Ack field, which the sender of the
Transmit_Response is prepared to receive.

Seq: specifies the sequence number of: the last
Transmit_Command sent by the sender of the Transmit Response.

Ack: specified the sequence number of the last in-sequence
Transmit_Command correctly received by the sender of the
present Transmit_Response.

Group and Member: specifies the channel over which
Transmit_Response is to he sent.

Status: indicates whether or not an error has been
encountered. The following codes are applicable to the
Transmit_Response:

Status Meaning

g Command was successful.

1 Channel non-existent: the Group and Member
fields of the Transmit_Command referenced a
channel machine unknown to the receiving CPI.

2 Illegal state: the Transmit Command has
referenced a channel machine which was in a
state for which the Transmit_Command is an
illegal input.

5 Message too long: the number of bits in the

Transmit_Command exceeded the maximum
permitted by the receiving CPI.

- 83 -

vt

e v .

st bl s o,

e

P

[

o rn oA Ao T St s MP‘M“‘"MD&”‘

Lot «

B e e TRy DN SUDY. S

Transmit Response

35

36

39

Semantics of TEXT

undefined

e R e e R R TR R T B

Service access protocol message error: an
error in the service access protocol message

contained in the TEXT field of the
Transmit_Command was detect2d by the SAPI.

Out of sequence: a Transmit_Command was
received and discarded whose Seq field was
neither in sequence [equal to <last received>
+ 1) nor a duplicate [between (<last received>
- 7) and <last received> inclusive] (see
Transmission Control).

Out of window: a Transmit_Command was received
and discarded whose Seq field was between
(<last received> + Credit + 1) and (<Klast
received> + 8) inclusive (see Transmission
Control).

Command discarded: the channel machine
received a Transmit_Command or an
Execute_Command, is in the SENDER_DRAINING or
SENDER_TERMINATING state, and has discarded
the Command without passing it to the service
access level.

¥

Field Function

Size specifies the number of kits in the
entire message.

Type specifies the message tybpe:

Begin 0
Transmit 1
Execute 3
End 4
Nop 5

C/R (C/R = 0) indicates a Command or
a (C/R=1) indicates a Response.

Credit specifies the number of
Transmit_Commands beyond the number
specified by the Ack field, which
the sendex of this nessage is
prepared to receive.

Seq specifies, in a Transmit_Command
its sequence number.

Ack specifies the sequence number of
the last in-sequence
Transmit_Command correctly received
by the sender of this message.

Service specifies, in Begin_Command, the
SAPI to which the channel is to be
establ ished.

Group specifies the channel group which
the message references.

Member specifies the channel which the

message references within the

channel group.

CHANNEL

Field
Name

HEADER
size

Type
C/R
Credit
seq
Ack

{not ustd)

Group

Member

control
{Connands)

PAD

TEXT

Messaae Format

Alterpate

Field Field Alternate
size Size Fleld
(bits) {bits) Name
[\
1 |
I 16 |
i 1
1 |
fmmemnma]
1 3 1
Jommmaan]
| IS S |
Jmemsnae 1
P4 1
| ELE R forsoens]mmmmane 1
P4] i
[— | 8] Service
: 4 } ; { (BEGIN Command)
I 4 |
[emmmmna]
I]
1 12
I 1
| A Tl 1
I 1
] 16 |
f i
{ |
Jrmammmal suep o] wmmenna]
, 8] | 8 I Status
I |] | {Responses)
ATy I e el |
INow2 A |
------- i
I !

I
INote B |
| i
\=mmmna— /

Note A: The size of PAD Is an Installatlon parameter,
Note 8: The size of TEXT is computed by:
(size) = (size of PAD) - 72,

Control

Status

PAD

TEXT

specifies control information for
Execute_Commands and End_Commands.

specifies status
Responses.

information in

is zero or more bhits lorg and
serves only to place TEXT on a
convenient beundary.

cqntains a service access or other
higher level protocol message.

ProTocoL HEADER

Begin_Response
(status=0)

ESTABLYSHED .

SENDER_
DRAINTUG

end ¢

last Transmir_Command
End_Conmand

last ¢ transmit ©

A CP1 senps

Begin Command
to initiate a new connection.

End_Command
to terminate a connection.

Execute_Command
to send out-of-band signals.

Transmit_Command
to send data between the host and the
front end.

A CP1 senps -

Begin_Response
to acknowledge a Begin_Cormand.

End_Raesponse
to acknowledge an End. Cormand.

Execute_Response
to acknowledge an Execute Command.

Transmit_Response
to acknowledge cne or moxe Transmit Commands.

An SAPI causes

s_begin ¢
to request that a new connection be
established.

s begin_r
to respond to a new request for service
by a ¢_begin c.

s_;:nd__c
to request that a connection be texminated.

s_end r
to respond to a request to terminate a
service by a ¢_end_c.

s _execute ¢
to request that an out-of-band signal
be sent.

s_execute_x
to respond to an out-of~-band signal delivered
by a ¢_execute_c.

s_identify
to notify the CPI that a service is ready
ta accept users,

8_ready
to control the flow of data from the CPI to
the SAPI,

s_status
to request the status of the CPI for
a particular connection.

&_transmit ¢
to request that data be sent.

A CPI causes

c_accept
to notify tha SAPI that an s_devent> appeared correct
and has been acted on.

c_begin_¢
to roquest a new service be initiated.

¢_begin x
to acknowledge a request for new service by an
8_begin_c.

c_end ¢
to request a service for a user be terminated.

c_end x
to acknowledge a request for termination by an
s_end_c.

¢_axecute ¢
to deliver an cut-of-band signal to the SAPI.

c_execute_r
to acknowledge an out-of-band signal generated by
an s_execute_c.

c_ready
to control the flow of data from the SAPI to the CPI.

c_reject
to notify the SAPI that an s_<event™ was in error.

c_status
to provide the SAPI with the status of a connection
in response to an s_status.

¢ _transmit ¢
to deliver data to the SAPI

A Synopsis oF CoMMANDS, RESPONSES
AND CHANNEL INTERFACE EVENTS

~n

/2

(service request)

)

PENDING

unacceptable
¢_begih r

request termination

send data

s_transmit ¢

SyNoPTIC SAPI StAT: DIAGRAM

Host Front End Protocol
Channel Machine
State Table

This section contains the detailed state transition table for CPI
channel machines. There is a channel machine for each channel.
A given channel machine receives inputs from and generates
outputs for both the CPI multiplexor/demultiplexor (Commands and
Responses) and an SAPI (events).

- 85 -

-~ - e g 7 man .~ s
e gy - -

v g
o ’ -
; Channel Machine States ;
}
) T |] - I TTRTTTETmETTTT I
CURRENT STATE INPUT I NEXT STATE OUTPUT | COMMENT |
| {SUB~STATE) |] | | |
l___ R D | S | |, |
| | - | ! | |
| NULL | acceptable | SENDER_ | c_accept | {nitialize channel |
! | s_begin_c | PENDING | Begin_Command | machine !
| SR D b D e e e e e e]
] | . ! | | | K
: | NULL | acceptable b~ === - I c_accept | ! 3
% | | s_end_c | i End_Command | | i
3 | | (flus’ ag, from | | (flushing) | , :
E | | HFP Ma ‘tenance ! | | A
B i | service) | | | |
| . e b e TSI B | S e——m———n | e ——mmem 1 §
5 | | | | | } '
& | NULL | acceptable | w === | c_accept | |
7 | | s_end_r (from HFP | | .End_Response | |
i | | Maintenance | | | |
% ‘ | | service) | |] |
B | ol S 1_ — I U |
; | |] I . '} |
3 | NULL | acceptable | =~ == | c_accept | register the SAPL
-l | | s_identify | | | | .
§ | _ b S . e ——— 1 — | emememm o]
. | i l ! { . |
[NULL | acceptable | ==~~~ | c_status | determine status |
| | s_status ! | { [
| — . —— SN SV JSSNY FS USRS |
| | | | | |
{ NULL | any other event] = = - - | c_reject | log the error |
[| (acceptable or | | | |
1 | unacceptable) | | | |
| e cm——m U FES U TES NS OO PSS USRI
| 1 | | [|
| NULL | valid | RECEIVER | c_begin_c | initialize channel
= : B=3in_Command ; PENDING } | machine |
S T R SN JUVETN —— R B A
(=" cEeTTEETT | TR | B | |
NuLL	End_Command Il -=-=-=--	End_Response	discard the nmessage	
	(valid or			
	invalid, flushing]		
	or non-flushing)		1 l	
[DO I D I D, e e I o d				
i i				
: NULL : End_Response : ----- ; ------	dl'scard the message l			
.................... e e m e e e e				
i	!		t	
NULL	any other Command	=~ - = = ~	corresponding	log: the error
o	(valid or	Response (Status=2)	{	
I	invalid)			
S S S o e	e ————	e mmmmmm e)		
				l
0	NOLL	any other [= ~= == i log the error	
	Response (valid			
	or invalid)		1 I	
r b I S D | e I I e |
b

|FECPITI AW D e i

Channel Machine States ’

i” I 77T B |t TS I

| CURRENT STATE | INPUT | NEXT STATE | OUTPUT | COMMENT 1

, | (SU8-STATE) | ! | 1]

‘ | e I SR I

i | | | | I |

3 ; | SENDER_ | acceptable | SENDER_ | c_accept] |

i | PENDING | s_end ¢ (flushing { TAKING_BACK | End Command l]

S !] | or non-flushing) | | (£lushing)] |

1 ' | R S | S | |

. [| | I i |

a | SENDER_ | acceptable | = === | c_status | determine status |

3 ‘ | PENDING | s_status [{ |]

3 ‘ | I R | N L ————— Ve e |

oo l | | ! | [
) | SENDER_ | any other event | =~ ==== | ¢_reject | log the error

L | PENDING 1 (acceptable or | | | }

1 | | unacceptable) H | 1 |

| N U B | R | e |

! 1 | I 1 SURERLEY

4 | SENDER_ | valid | ESTABLISHED | c_begin_r | |

5S | PENDING | Begin_Response | | (Status=0) 1 1

i | | (Status=0; |] | |

v R B e | S B e | |

b | | | | ! |

P I SENDER_ | valid | NULL | ¢_begin_r | = - = - - |

; ! PENDING | Begin_Response | | (Status#a) | |

' 1 | (Status#8) | i | |

L e e e e —— | | ————— e ammme

| I | | | | I

! | SENDER_ | invalid | SENDER_ | ¢_begin_r | log the error |

1 PENDING | Begin_Response | TERMINATING | (Status7e)] |

| 1 | End_Command !]

' 1 | | | (£lushing) 1 {

S e cmm—— | S e m———— S O U S P o A

| | | | | 1

| SENDER_ | End_Command | NULL | c_end_c | I

| PENDING 1 (vaTid or | | End_Response | I

| | invalid, flushing | | | 1

| | or non-flushing) | ! ! |

IR U R, N I U E e em—— | A

| |] | |

| SENDER_ | any other Command [- ~ = ~ =~ | corresponding | log the error |

| PENNING | (valid or I | Response (Status=2) | |

[| invalid) | | I

| N N U R N o e ——— I eemen

| | | | | |

| SENDER_ | any other | = ===~ T | log the error |

| PENDING | Response (valid | | 1 |

! | or invalid) | | | I

| JRN B U P RN P | U N

“.r

S g e T ” = i, 2]

b w5 3ttty

T T e T TR Ty TS e T T e e T TR Wed

Channel Machine States

| | |

| CURRENT STATE | INPUT | NEXT STATE | ouTPUT } COMMENT

| (SUB-STATE) | | | f

| | | | |

} | | | |

| RECEIVER_ | acceptable | ESTABLISHED | c¢_accept I

| PENDING | s_begin_r | | Begin_Response

1 | (Status=8) | | (Status=a) I

1_ | | | — S

| | | I |

| RECEIVER_ | acceptable | NULL | c_accept

| PENDING | s_begin_r | | Begin_Response |

| | (Status#0) | | (Status#n) |

I_ _— A 2 | R

| | | | |

| RECEIVER_ | acceptable | NULL | c_accept |

| PENDING | s_end_c (flushing | | End_Command

| | or non-flushing) } : (£lushing) :

| | —_— N D

| | | | |

| RECEIVER | acceptable | = ==-- | c_status | determine status

{ PENDING | s_status | l |

| | I

I | | | |

| RECEIVER_ | any other event | === | c_reject | log the error

{ PENDING | {acceptable or | | |

| | unacceptable) | | |

| R J | ——

| | | | |

| RECEIVER_ | valld End_Command | RECEIVER_ [c_end_c |

| PENDING | | TAKING_BACK [|

| ec——— | e ————— | |

| | | | |

| RECEIVER_ | invalid | NULL | c_end_c | log the error

| PENDING | End_Command ! | End_Response

S | | e ncce e e ————— | e e e

= I I I !

] RECEIVER | any other Command | = = - - - | corresponding | log the error

| PENDING | (valid or | | Response (Status=2) |

i | invalid) | | |

S | S |

| | | | |

| RECEIVER_ | any other | === | === == | log the error

| PENDING | Response (valid | | |

] | or invalid) | | |

| ——em——————— | | el e cc————
- 89

o 3 4 - ECA— z 572
7Channel Machine States
| | ! CTTTTTTTTRTT jooT T I
| 'CURRENT STATE | INPUT | NEXT STATE | OUTPUT | COMMENT I
| (SUB-STATE) | | | | |
4 S | e | e e d
| | | | I J
i [SENDER_ | acceptable Il ===~ - I c_accept | J
’ | TAKING_BACK | s_end_c (flushing | | End_Command | |
3 I | of non-flushing) | | (flushing) [[
3 | e e e | [b L D |
3 | I | | | |
3 | SENDER_ | acceptable [-~ === | c_status | determine status !
| TAKING_BACK | s_status | ! i [
| Y I]
- 1 | { | { 1
b | SENDER_ | any other event | = = = = = I c_reject | log the error]
I TAKING_BACK | {acceptable or | | |]
{ | | unacceptable) | | | |
b e I S e S |
| i 1 | | | | !
5 ! SENDER_ | valid | - =-=«-= | = =---=« | |
i | TAKING_BACK | Begin_Response | | 1 [
2 | | (Status=0) i | | |
; S S R | T I | e
1 | ! | i I
L | SENDER_ | valid I NULL | c_begin_r i |
: | TAKING_BACK | Begin_Response | | (Status#a) | |
. \ | (Status¥@) | | | |
i P S P ———c———— D O e —
: ; | | | | ! 1
; ' | SENDER_] valid End_Command | NULL | c_end_c i {
: | | TAKING_BACK | l | End_Response ! i
' | A e e | e | e |
} | | | | | |
; | SENDER_ | valid | NULL | c_end_r | |
; | TAKING_BACK | End_Response] : ! ||
! e e | S U et —————— ot e e ———
N | | I I I l
: | SENDER_ | any other Command | = = =~ = - | send corresponding | log :the error |
: | TAKING_BACK | (valid or | Response (Status=2) 1} | »
i | | fnvalid) | | | |
4 | —— R N [|
| | | (|
| SENDER_ | any other I - --=-- | ~=--=-- i Yog the error !
| TAKING_BACK | Response (valid | | i |
I ¢ or invalld) | I l I
| — R | I ——— v e e e i |
" |
A t
’ 1
4
1
[.
o
]
3
4
- 9¢ -

v ¥ L : L6 . § ! <
Channel Machine State
%
3
i
| 1= | | | | 1
! CURRENT STATE | INPUT | NEXT STATE | ouTputr | COMMENT |
! (SUB-STATE) | [! I !
1 | i | !
3 | |] i I l
! | RECEIVER_ | acceptable | = -==- | c_reject | i
| TAKING_BACK | s_begin_r | i | |
- | | (Status=g) I ! | !
| l_- S | Y P e I
; | |) ! I I I
' | RECEIVER_ | acceptable | NULL | c_accept | |
. I TAKING_BACK | s_begin_r i | Begin_Response | i
. [| (Status#6) i | (Status#@) I |
1 | [S | D ————— [—mmm——m—om o
| | | | | |
i | RECEIVER_ | acceptable | NULL | ¢_accept | |
A 1 | TAKING_BACK | s_end_c (flushing | | End_Command I |
" | | | | or non-flushing) | | (flushing) | 1
b ' ————— [[S S S e {
L | | |] | |
| RECEIVER_ | acceptable | NULL I c_accept | |
; ! TAKING BACK | s_end_r ! | End_Response I !
K I [F e |
\ 1]] !] !
: | RECEIVER_ | acceprable | == === | c_status | determine status |
; | TAKING_BACK | s_status { i I I
' D, IO T | e PRI |
i 1 | ! | | |
) | RECEIVER_ | any other event | - - - - = | e_reject I log the error I
% . | TAKING_BACK | (acceptable or { | | |
> 3 | | unacceptable) |] I |
f i I SR PR e — S el
’ : | I | | |]
| RECEIVER_ | valid End_Command | NULL | c_end_c | |
| TAKING_BACK | | | £nd_Response | |
b [R | [, mm—emm——— | IS P e c————— S e m————— S 1
s | | | | ! !
| RECEIVER_ | any other Command | - - - =« = | corresponding ! log the error |
| TAKING_BACK | (valid or] | Response (Status=2) |)
| { invalid) | | i |
H S DO DSOS e e ——— |
; | | { ! | i
| RECEIVER_ | any other | RECEIVER b o= - - - | log the error |
| TAKING_BACK | Response (valid | TAKING_BACK | i |
| [or invalid) | | | !
| SR F ————e————— | D, ——————— 0 el
. é“
;’,—
2
L
!
4
:“ o
k b
3
3
4
] 4
- 91 -
1
SR S SRS o R PRI b DS

R L

o e et] B« Mt e iy ity e —

Channel Machine States

|
| INPUT

(acceptable or
unacceptable)

[] | |
| CURRENT STATE | NEXT STATE | ouTpPUT | COMMENT
| (SUB-STATE) | r | {
I el | | |
| | | [‘|
| ESTABLISHED | acceptable | SENDER_ | c_accept | discard any queued
| | s_end ¢ | TERMINATING | End_Command | data
E | (Flushing) [| (£lushing)

_____ — I_ - | R DU —
| | | | |
| ESTABLISHED | acceptable | SENDER_ | c_accept | discard any data
| (with data | s_ead c (non- | DRAINING I | queued for SAPI;
i queued for | fIushing) | | | send data to
| apposite | | | | apposite CPI; place
! CPI) | | | | End_Command (non-
| | | | | f£lushing) at end of
| | | | | send queue;
| { | | I acknowledge but
I | 1 | | discard any incoming
| | [| | messaqges
| e | e | e S | S e ———
| | | | |
| ESTABLISHED | acceptable | SENDER_ | c_accept | discard any data
| (with no | s_end ¢ (non- | TERMINATING | End_Command (non- | queued for SAPI;
| data queued | fTushTng) | | flushing) | acknowledge bhut
| for | | | | discard any incoming
| apposite | | | | messages
| CPI) | | | l
R U F | o —
I | | | |
| ESTABLISHED | acceptable [== === | c_accept | place
| | s_execute_c | | Execute_Command | Execute_Comnand at
} { (synchronize) : } : end of send queue
| {]] |
| ESTABLISHED | acceptable | = ===-= I c_accept | place
| | 5_execute ¢ I | Execute_Command | Execute_Command at
: : (expedite) : } : head of send queue
| I | - R |~ TeTEEmTT
| ESTABLISHED | acceptable | === | c_accept | place
| | s_execute_r | | Execute_Response | Execute_Response at |
| | | | | head of send queue |
| I S e e ———
| i | | |
| ESTABLISHED | acceptable | ===== | c_accept |
| (with no | s_ready | | i
| data queued | | | |
| for sapI) | i |]
Y S SN D U R m—— ————
| | | | |
| ESTABLISHED | acceptable | ===~ - | c_accept
| (with data | s_ready | | c_transmit_c(s)
| queued for | 1 | |
| SAPI) | ! | !
| S [D S mec——n
| 1 | | |
] ESTABLISHED | acceptable | == == | c_status | determine status
i | s_status | | I
| | L D
| | | | |
| ESTABLISHED | acceptable J =~ -~ | ¢ _accept
! | s_transmit_c | | Transmit_Command !
D | e N oo | S
	i	
ESTABLISHED	(able to [- - ===	¢_ready
	accept duta I !	
I	from sar1 I I I	
l	or previous	
	allocation	
	exhausted)	
l	I [
		I e e e
	[
: ESTABLISHED | any other event : - -~ } c_reject : log the error

I

| f | I |
I | | | |

.yt Tt

PLY.. ©

[e e i 2 St M g e S, o

b
w0 5
Bt To e st i

invalid
Transnit_Command

any other Command
{valid or
invalid)

‘Channel Machiné States
| R [| ° I [|
| CURRENT STATE | INPUT | NEXT STATE | ourput | CONMENT 1
I (SUB-STATE) - | 1 i]
1 | l.. | S - I
| {) I [| I
| ESTABLISHED . | valid End:Command | RECEIVER_ | c_end_c | discard any data]
| | (flushing} | TERMINATING | | queued for SAPI and |
H l | | | for apposite CPI |
| - | el —— | .. 2
| | | | | [
| ESTABLISHED | valid End_Command | RECEIVER_] ~=-=-=-= | discard any data f
(with data	(non-flushing)	DRAINING {	queued for apposite	
queued for:				CPI; place ¢_end_c¢
SAPI)				at end of receive]
	i		queue; acknowledge	
				but discard any
				incoming messages I
S		. T DR, [, e ——— .		
l	I			
ESTABLISHED	valid End_Command	RECEIVER_	c_end_c	discard any data
(with no	(non=flushing)	TERMINATING		queued for apposite
data queved		!	CPI; acknowledge but	
for SAPI)				discard any incoming
				messages
———— e e~ ————	- [Y P —————————			
1 l		1 1		
ESTABLISHED	invalid	NULL	c_end_c	log the error I
!	End_Command ! ! End_Response i !			
	(fluching or	I		
	non-flushing)			
OOV PRSP SpUYNUUY (NS RUU U PV e ——— Y P amm—— o)				
				1
BSTABLISHED	vallid	= -	c¢_execute c	place c_execute_c at
	Execute_Command			end of Tecelve queue
	(synchronize) i]	
N D [N RN P S				
ESTABLISHED	vallid	- - - ! ¢_execute_c	notify SAPI of	
	Execute_Command	i	attention, place	
	(synchronize,			c_execute_c at end
	attention) i		of recelve queue	
PR e —c———— N DO S, ST T, —————	R			
i				
ESTABLISHED	valld	= ==-=-- { c_execute_c	place c_execute_c at	
i	Execute_Command			head of recelve
	{expedite)			queue
U S I P [V I e ————				
			i {	
ESTABLISHED [valid	- =-=-=--	c_execute ¢	notify SAPI of	
	Execute_Command			actention, place 1
]	(expedite,			c_execute_c at head
] attention)			of recelve queue]	
1N FE U I e	S e e e el			
1 l	1			
ESTABLISHED	valid	=== -	c_execute_r place c_execute r at	
	Bxecute_Response] head of receive		
	i I queue]			
I D [P	SRS PR e e			
ESTABLISHED	valld	= ===~ c_transmit_c update flow control		
! (with data	Transmit_Command	Transmit_Command (s} I		
] queuned for		i		
apposite				
] CPI)] ! I				
: em———- ; ____________ —————	l ____________ e e bl mmmmm—mm—m -]			
ESTABLISHED	valid I c_transmit_c update flow control			
(with no	Transmit_Command	Transmit_Response		
data queued	i			
for				
1 apposite | 1
l CPI} | !

i |
]]
| |
! |
1 !
| |
i |
]
|
|
|
t
i
H

any i fice H
Hespr e v s i
sh teto AT g i) i

|

o

Transmit Response
(Statusz)

- © e e v o o

seiate flow contvol;
loq any error

it iespunding
Kexponse (Status=2)

o memmm

Aol

Channel Machine S:tates

|
CURRENT STATE | INPUT

: NEAINENG

Response (valid

|] | | |
| | NEXT STATE | ourpuT | COMMENT I
] (SUB-STATE) | | | | |
|- — | | -l ——l
SENDER_	acceptable	SENDER_	c_accept	discard any queued
DPAINING	s_end_c	TERMINATING	End_Command	data
	(flushina) {	(flushing)]]		
l. — lo___		——— . ez		
{ o				
SENDER_	acceptable	=== =	c_status i detetmine status J	
] DRAINING	s_status	i]		
	U DO,			
SEMNDER_	any nther event	== ===	c_reject	log the error
DRAINING	(acceptable or		!	
	unacceptable)		I	
	2 ¥ e e ————— I			
i			I i	
SENDER_	valid End_Command	NULL	c_end_c	discard any data]
} DRAINING : (£lushing) :	End_Response	queued		
___________________ RS FOUS U RS - - e				
!		{		
SENDER_	valid	- =-=~=--	Execute_Response	acknowledge but
} DRAINING : Execute_Command : I (status=39) : discard the message :
__ | - s

| | | | I |
| SENDER_ | valid | = === [=== == | discard the message |
| DRAINING | Execute Response | | I i
| R OO I I | I | S -
| } | |] I
| SENDER_ | valld I === - | Transmit_Response | acknowledgs hut |
| DRAINING } Transmit_Command | [(Status=39) | discard any incomirg ¥
| l | | | messages t
e I | I__ | ——— i
| { i [. | i
| SENDER_ I (acknowledgement | SENDER_ | End_Comnand (non- | !
| DRAINING | of last Ttansmit_ | TERMINATING | £lushing) I §
1 | Command | | i i
| S | | ! e . o8 TSR |
| | | I ! I
| SENDER | invalid | === - i Transait *fe-ponze ! 1og the error |
1 DRAINING | Transmit_Command | 1 (832 31 smre i :
| S | | S Y |
17T] 1 T } !
| SENDER_ | valid - ! - - | update flow control |
| DRAINING | Transnit Respsnue | : :
| | T P e oo e ———
(7T |77t § - | | |
| SENDER I any other comant | - =« = = = | corresponding I log the error
| DRAINING f otvatnd o i | Response (Status=2) |
| f o1 oalaed) 1 | I
{ e e | S
1" ! | | |
A Dot | | any other | = ===~ : ----- : log the error

I

! | I

I | !

|
or invalid) |
]

[

R . < ey s T Pt S =
Channel Machine States L
. , . - 8
]
P
T 1 "l T 1~ . f 3
! CURDENT STATE | INPUT | KEXT STATE | curepUT I COMMENT .] F
| (SUB~2TATE) | . | ’ | i H
!)] 1 i oL
b { j | I _] i
! RECEIVER_ | acceptable, | NULL I ¢_accept PR EOE TR RSN ¥ f 3
] DRAINING | s_end_c (flushing | 1 'End_Comiand I oot ! .
v | or non-flushing) | . { {£lushing} : ! 3
| I . i - K {-
! T] T ’ |
'l RECEIVER,/ ! acceptable b === foogo.mt { discard the message |
1 DRAINING | s_execrute_c ! H : !
I - I .- : . _—— !
| { - f : { |
| RECEIVER | acceptable H i o reject | discard the message |
I DRAINING | s _execute r t ! i i
] ' o 3] i |
i I i 1 - I l
| -RECEIVER I arcopsaito fo~---- I ¢_accept I !
| DRAINING T EE Y 1 I c_transmit_c - 1
I (with davzy ¢ H 1 | !
t quenrss ta; 1 { | 1
] FETLY § l | { |
i | l el . e mmmm————— o]
¢ 1 | ! I |
i SFECEIVER | acceptable] = ===-- } c_status | determine status |
i DRAINISG I s_status | | | | 5
| S o I e | S, I e D I .
i]] !] |
I RECEIVER_ | acceptable I ===~ | c_reject | discard the message |
I DRAINING | s_transmit_c | | | |
| | ——— S S, | . ———— SR PO R |
! | | | |
| RECEIVER_ | (last | RECEIVER | c_end_e [1
l DRAINING | c_transmit_c | TERMINATING | | !
| | passed) [| | |
e [SO SRR S e e m———— SN 3
| | | | l |
I RECEIVER_ | any other event | = = = = = I c_reject | log the error |
| DRAINING | (acceptable or | | { |
| | unacceptable) | |] |
DO —————— mmm—————— D —— AU PPN |
| i } | | 1
I RECEIVER_ | valid End_Conmand | RECEIVER_ | c_end c | discard any data A
{ DRAINING | (flusting) | TERMINATING | | queued]
_________ SNSRIV OSSOV USRI PV Ut PSSP -
i | b !] | h
| RECEIVER_ | any other Command | =~ - -~ = = | corresponding | loa the error | .
| DRAINING | (valid or I | Response {Status=2) | ! ‘
| | invalld) | | 1 i .
I ———— [D —————— Do T ememmcmm b e e e cm————— 1
| | i | ! |
| RECRIVER_ | any other | ==~~~ R | log the error |
| DRAINING | Response (valid 1] i | ,
i | or invalid) | | | ! :
| I SR SO SRR FEUE, —————— D SNV S I
:
g .
3
5
F 0
r l
1 ,
E ES :
0 - 95 - 3
. A 5 T Sl 3 S S e i =4 e - ——

A e TR T, TR TS es TR e Tt TR o - . B e 2 A e e T

. i . " Bindiieait i TR T T,
. B e I N ——— o vy - . c v
'3
! . |
£ Chznne! #acizine States
k]
b - i R f i I | | |
s § CURRENT STATE | INPUT | NEXT STATE | OUTPUT | COMMENT |
W' i (SsuB-STATE) | | k | |
L | | | P lowe 1
N | i | } { |
-4 | SENDER_ | acceptable | = -= == | ¢_accept | }
v { TERMINATING | .s_end_c (flushing | | End_Command | }
|4 | | or non-flushing) | | (flushing) | |
3 | | | S P O P ———— e |
L | | | | | i
3 , | SENDER_ | acceptable | = ==~ = | c_status | determine status |
3 i 1 TERMINATING | s_status | | | |
} | ——e——e——— e | D e ——— N
| - | | | | |
e f | SENDER_ | any other event | - ===~ ! c_reject | log the error]
! | TERMINATING | (acceptable or | | | |
Ft | | unacceptable) | | | |
: | S S O e e ———— b e e e————— A
| i | | I
| SENDER_ | valid End_Command | NULL | c end ¢ | 1
| TERMINATING | (flushing or | | | |
] | non=flushing) | |] |
| | I S e . e e | e mem——— cmemeneea|
| |] | | I
| SENDER_ | invalid | NULL | c_end_c | log the error |
F“ } TERMINATING } End_Command I | End_Response | 1
i VRIS NI memm— I P ———— | fem o —— | e ————— |
Fry L | | | | | |
X | SENDER_ | valid | NULL | c_end_r 1 I
‘ | TERMINATING | End_Response | 1 | l
- | e memccmcmcmcne oo ———— N T P ——e——— I e aceccee . A
{ | | | | |
Q | SENDER | vaiid [= === - | | discard the messane |
§ : TERMIMATING | Transmit_Command : l I]
, —nmm——— mmmmommem b o cem——aee SO B ————e—— SR FO mcm———— [IR, mmmmm——mr— J
H | | | | | |
! | SENDER_ | valid | -=-=-=-- | ==-==-= | update flow control
¥ 1 TERMINATING } Transmit_Response | : : |
S U FUR N N R eem—m——— R |
{ | | I | |
| SENDER_ | any other Command | = = « = = | corresponding | log the error |
| TERMINATING | (valid or | | Response (Status=2) | |
| | invalid) | i | |
TSN S | S ——— | e ——— |
| | | | | 1
| SENDER_ | any other | == ===] == == - | log the error |
| TERMINATING | Response {valid | l | I
| | or invalid) | i | |
NS S —————— | S oo e | S ——mean

ATA AT A e

[YR e o

kN

T

LAY RSy

PRPR I L)

3

o

S IR A3 L bidre v oaln bindrasdibnssolen').

B i o\ e o el £ it g Y

¥ o e R s s e .

#

o

Channel Machine States

ToTmmmmm joomTm T R |TTmmmmm T B e e
CURRENT STATE | INPUT i NEXT STATE | cuTeuT | COMMENT
(SUB-STATE) | I ! !
_______________ S N SOt SO SR PSR
I | | !
RECEIVER_ | acceptable | NULL ! ¢_accept |
TERMINATING | s_end_c (flushing | | End_Comn'and |
| or non~flushing) | | (£flushing) |
___________ JEUTSTENY PRV PRSI N RO POV
| | | |
RECEIVER_ | acceptable | = ===- | ¢_status | determine status
TERMINATING } s_status | |
S SRRSO F S Y —— PSR —memmmm——ee e ———
i } l [
RECEIVER_ | acceptable | NULL | c_accept I
TERMINATING } s_end_r : | End_Response i
........ mmmmmmn et e e e e el
I | | |
RECEIVER_ | any other event | =« = - - - | ¢_reject ! log the error
TERMINATING | (acceptable or | | {
| unacceptable) i | I
——— e —————— R S R ————mm———
| | |]
RECEIVER_ | valid End_Command | NULL | c_end_c |
TERMINATING | (flushing or | End_Response
{ non-flushing) I] |
_______ Y SOV TS Py U VTS JUR U NS
| | | |
RECRIVER_ | any other Command | = - - - - | correspending | log the error
TERMINATING | (valid or | | Response (Status=2) |
invaliq) |] t
m—e—— N | i -
! | |
RECRIVER_ | any other J === | = ==w - | log the error
TERMINATING | Response (valid | | |
| or invalid) | | |
e ——————— S D P SRS P —mmmam——— ———
- 97 -~

eycey

pg ey

ot vt et ocme

e & ayrema e

e

G B i i -

<N g,

WA

Channel Machine States

BLANK PAGE

- dpea e e

. Lo ..
|

®

et e b s m—— e oL

N CHANNEL INTERFACE

CHANNEL INTERFACE

Introduction

The following section @escribes a model for the channel
interface. The model is presented as a set of events
corresponding to the Channel Protocol Commands and Responses, and
a few events peculiar to the channel interface. It is of no
concern here whether an implementation of the channel interface
follows an event model or, say, a procedure calling model.
However, the functions of the model must be preserved. For a key
to the notation used in this section see "Notation and
Nomenclature Conventions for the Channel Machine.”

For each event, there is a preséntation of:
1. its cause,
2. its effect,
3. the channel machine state tabie for it,
4., the semantics of its fields.

The conventions followed in the state tables are given in the
introduction to the Complete Channel Machine State Table.

- 99 -

|

roe . 4y

v mwmm e R T TR PRV IR Y 3
N v A} |
- - .

¥ vy e
o e

o A

T s e T AT LA

c_accept

Cause

A channel machine causes a c_accept event in order to indicate
to the SAPI that an s_event appeared consistent and has heen
acted upon,

Effect

Any effect of a c_accept event on the SAPI depends heavily on
the implementation.

Channel Machine States

. o o o e o o

| CURRENT STATE

INPUT	NEXT STATE	cuTPUT	COMMENT
(SUB-STATE)	I		
e R			S
I I] I			
I any state	acsceptable	(see the	c_accept 1 (see the s_e<event>)
I I s_<event> i s <event>)	(see the s_<eventd>)	{	
	b oo	O	
¥
Syntax
Ref: FIXED(?)
Group: FIXED (12) J
Member: FIXED(16)
Semantics

Ref: specifies the unique identifier supplied by the SAPI to
identify this response to a previous s_<event>.

Group and Member: specify the channel to which this event
applies.

- 100 -

[

LSt LN

MR Ed

b thh e AR * W e N 4
X g SN

§ A YRR T

e e e et et At ¢ A 3 S e P e

[-

e S A . i o et o 5 - — - e e mm e e e e e ae = s e e et e e wmeem e e O VOGS SV

c_begin_c

¢_begin_c

Cause

A channel machine causes a c¢_begin_c event in order to request
an SAPI to initiate access to a service.

Effect
When an SAPI receives a c_begin _c event, it determines whether

or not it can initiate access to the service and then causes
an s_begin_r event indicating the result.

Channel Machine States

> | ot A O o o

I | | |
| CURRENT STATE | INPUT | NEXT STATE | ouTpUT | COMMENT |
! (SUB-STATE) | I ! l !
SRS e ———— |
!] l | | f
| NULL | valid | RECEIVER_ | c_beqgin_c¢ } initialize channel :
| Begin_Command I PENDING | | machine |
ST I U U, |
Syntax
Group: FIXED(12)
Member: FIXED(16)
Service: FIXED(16)
Text: VARIABLE
Semantics

Group and Member: specifies the channel to be established.

Service: specifies the number of the SAPI to whbich the channel
is to be established.

Text: contains the service access protocol message.

- 191 -

- —

"y

ey e

ey T e X

a e

c_begin r

Cause

A channel machine causes a ¢_begin_r event in order to

c_begin_r

the SAPI that it has received a Begin_Response,

Effect

When an SAPI receives a c_begin_r event with Status = 4, it

may proceed to

exchange data with its apposite.

If an SAPI

receives a c_begin_r event with Status # @, it enters the NULL

state,

Channel Machine States

- e oy e e

CURRENT STATE
{SUB-STATE)

e L Ll L L T TN

SENDER_
PENDING

SENDER_
PENDING

SENDER_
PENDING

- i e o e o

SENDER_
TAKING_BACK

Syntax

Group:
Member:
Status
Text:

- g ot o o

valid
Begin_Response
{Status=0)

valid
Begin_Response
(Statusyn)

1 2 0 At g

invalid
Begin_Response

St i et g B

valid
Begin_Response
(Status#8)

. o

SENDER_
TERMINATING

FIXED(12)
FIXED(16)
FIXED(8)
VARIABLE

- o e

¢ begin_r
(Statusno)

- =

c_begin_r
(Status?a)

- e 0 e e s o

c_begin_r
(Status#a)
End_Command
(£1ushing)

v o e et o

c_begin r
(Status?a)

- e o e

20 g Y

R L L L L T

o

R e b

notify

e e e e e e

v

PPN

e A A N

[

c_begin_r

Semantics

Group and Member: specify the channel refered to in the
Begin_Response.

Status: indicates to the SAPI whether the attempt to establish
a channel has been successful. This field will contain one of
the standard Status codes (see Complete Status Codes).

Text: contains the service access protocol message.

e it R sk iadinl w-xww!’m

-

A A o i, B s Yy st

Wa\i\wmm

o

L\

1 .
PR

c_end_c

c_end_c

Cause

A channel machine causes a c_end_c event in order to pass the
TEXT field of an End_Command to the SAPI.

Effect

When an SAPI receives a c_end_c event, it is to immediately

terminate the access to the service and cause an s_end_r
event.

e e e~

Charninel Machine States

non-flushing)

| | | | | |
| CURRENT STATE | INPUT | NEXT STATE | ourpuT | COMMZNT 1
I (SUB-STATE) | I | I i
i ; l. | | - | !
| i | | I i
| SENDER_ | ‘End_Command | NULL | c_end c | I
| PENDING I (vaTid or | 1 End_Résponse ! 1
| | invalid, flushing |] . 1 I
] | or non~flushing) |] | 1
| | i l I 1
I I { 1 1]
| RECEIVER_ | valid End_Command | RECEIVER_ | ¢ end c i !
I PENDING]] TAKING_BACK |] i
I | | 1 1 P
| | I | 1 1
-4 RECEIVER_ | invalid I NuLL | c_end c I log tze ezrer =
1 PENDING I End_Command ! 1 Ené_Response i :
| - | | 1 1 ~ -
| : ! - e 1] £
| SENDER_ | valid End Comxand | MULL I cen e] !
1 TAKING_BACK | i] €ad Respease 2 1
i I |] —— £ I |
i | 1 1 B . i
| RECEIVER_ I valid End Command | NULL PFCentw i - }
1 TAKING_BACK | i B Fwd wregarn o0 1 1
| | 1 . . e] I
| H 1 ; 1 I
1 Z=STASLISEZD 1 valfé Tad Conmand § R7.5/% 22 LR i discar@ any data !
H i (flpskiag) R e~ B R | cuveved for SAPI and |
I] s I i for apposite CPI I
1 2 . . _i i I
1 i 3 1 ! l
] ESTASLISEED ! wa=e~ s - ~uecthd | RECEIVER P -=-=--- I discard any data I
1 (wizh 225 ? twe. 2 uniing) 1 D3AINING I | queued for apposite |
1 L 1 1 | cP1; place c_end ¢ |
] b S i 1 ! | at end of receive |
% L | | | queue; acknowledge |
z 1 i | but discard any |
7 1 i | | inconing messages |
- 1] 1 R |
H 1 I i I |
] ESTASLISHED | valid End Command | RECEIVER_ | c_end_c I discard any data
1 {with no } (non-flushing) | TERMINATING | | queved for apposite
1 data queued | | 1 | CPI; acknowledge but |
1 far SAPI)] i | | discard any incoming |
H I l | I messages |
I I e e | | |
! | | | | 1
| ESTABLISHED | invalid | NULL | c_end_c | log the error
I I End_Command 1 | End_Response | |
I | (flushing or | I | |
| [non-flushing) |] | | | |
| | e e | e ———— | e e e m—————— |
| | I I | |
| SENDER_ | valid End_Command | NULL | c_end_c | discard any data |
| DRAINING | (£lushing) | I End_Response I queued 1
| | | e e ——— | e I |
i | | | | |
| RECEIVER_ I (last | RECEIVER_ | ¢ end ¢ | |
| DRAINING I c_transmit_c | TERMINATING | |]
I | passed) | | | !
| | | U | S |
) I | | | |
| RECEIVER | valid End_Command | RECEIVER_ | c_end_v | discard any data 1
| DRAINING | (flushing} | TERMINATING : ; queued :
| | RV RS S DI
Tt [I | [I
| SENDER | valid End_Command | NULL | ¢ end ¢ | 1
| TERMINATING | (flushing or | | | 1
| | non-flushing) I | | 1
| | | e e | |, |
jTTTTTTTT | | | | |
| SENDER | invalid | NULL | c_end_c | log the error
1 TERMINATING | End_Command : : End_Response ! =
| e e e e e m—mtemmm—————————
""""""" | I I I {
RECEIVER | valid End _Command | NULL | c_end_c I |
| (flushing or { { End_Response : |
|
I | | |

i
| TERMINATING
[]
1
I

\

T REETETTE T T IRTTR TR R e

Pa B W5 748 R0/ T I TS

[IR S

!
% .
|
i
i
f
i
)

- c_end_c ..
Svntax
Group: PE¥LiL 2}
Mexber: & 4xinilag) -
States: LIXED(3)
Texdc VARIABLE

Semantics

Sroup and Member: specify the channel to be terminated. If
the Group 1is not =zerc and the Member is zero, all ‘channels
with the same group are to be terminated. If both Group and
Member are zero, all cnannels are to be terminated.

Status: indicates to the service whether or not the
End_Command was correct. This field will contain one of the
standard Status codes (see c_reject).

Text: contains the service access protocol message.

&

—
-

4 -
PO §

e

g e

Cause

Effect

e e e e e i R TR - S ik o A et e |

c_end_r .

c_end_r

A channel machine causes a c_end_r event in order to pass the
TEXT field of an End _Response to the SAPI and to indicate to
it that the channel has been terminated.

When a SAPI receives a c_end_r event, it ccnsiders the charnel
to be terminated.

Channel Machine States

[Remmmmm——————-

| | | I
{ CURRENT STATE | INPUT | NEXT STATE 1 ouTPUT | COMMENT !
| (5UB=STATE) | | | 1 H
e P R R oo |
| |
| SENDER } valid | NULL | c end_r | |
] TAKING_BACK | End_Response : : : :
IO (VSN DOV SRS JOV USSP
17 | | 1 i [
| SENDER_ I valid | NULL | c_end_r I |
| TERMINATING } End_Response : } { :
| e ————— U SN OHPUY DUV U RSO ISP U U PURUR U OO
1
1;
|
Syntax :
Group: FIXED(12) :
Member: FIXED(16)
Status: FIXED(8)
Text: VARIABLE
Semantics

- - . e U ot 2 e [W T R A S

-

Group and Member: specify .he channel on which an End_Response
was received.

Status: indicates to the service whether or not the
End Response was correct. This field will contain one of the

standard Status codes (see c_reject),

- 107 -

c_end r
Text: contains the service access protocol message.
: i

g

Ve A

o

3 i
e e v e e, A ™S b bt s 3 chO it s e e ot

'
i

[N

N > o e e PR A e e S S b A DM AR O PRRAN s Ao bnu p B Sh

e -
) .c_execute_c
c_execute_c
2 Cause
"
A channel machine causes a c¢_execute_c event in order to pass
[the TEXT field 6f an Execute Command to the SAPI.
i
{ Ef fect
!
1
! When an SAPI receives a c_execute_c event, it is to act on the
TEXT of the Execute_Command immediately and <ause an
S_execute_r event,
4 [
: Channel Machine States
o
4 ‘L | 1 B Y R |
v é | CURRENT STATE | INPUT | NEXT STATE | ouTPUT | COMMENT |
£] (SUB~STATE) | | I ! l
3] I I e]
(| I | ! I
: | ESTABLISHED | valid | = ===- | c_execute_c | place c_execute_c at |
| | Execute_Command | | | end of receive queue |
] | (synchronize) l l ! !
e ——— {
{ | ! l | !
| TABLISHED | valid | === == | ¢_execute_c | notify SAPY of |
| | Execute_Command | | | attention, place i
| ! (synchronize, I | | c_execute_c at end |
I | attention) | | | of receive queue 1
D U, U, |
| |] | | {
| STABLISHED | valid | &= === | c_execute_c | place ¢_execute_c at |
| | Execute_Command | | | head of receive |
> | | {expedite) | | | queue |
) S I !
| i ! ! |]
| ESTABLISHED | valia | - = === | c_execute_c { nctify SAPY of |
| | Execute_Command | | | attention, place 1
| | {(expedite, | | | c_execute_c at head |
| | attention) | | | of receive queue 1
) e B | B | e eeam |
3
3’ Syntax
1 f Group: FIXED(12)
1. Member : FIXED(16)
Text: VARIABLE
X
b
1x - 109 -
; %
1 7 aEm o T T e SRS < FI LSS e oz e _

e

s i

AR

o

~

[P

- N “ e + [P N S S i NS ~ﬁ_‘
X s .
c_execute c

Semantics :
Group and Member: specify the channel on which an

Execute_Command was received. \

N H

'Text: contains the service access protocol message. j

T T

N e

ALY

- EEN F e e - G re e T e T II T T E T
(AN he 7

c Pl e
< s a e e

c_execute_r

Cause

A channel machine causes a c_execute_r event in order to
the TEXT field of an Execute_Response to the-SAPI.

Effect

when an SAPI receives a c_execute_r event, it is to process

the Text field.

Channel Machine States

v e 0 T ¢ e 0 v | A et ot e S 0 O

!
| CURRENT STATE

TN RO ,j‘:lagi
z —

"C_execute_r -

pass

] o T 8 e T 4

|] | i
| INPUT | NEXT STATE | OUTPUT | COMMENT
I (SUB~3TATE) | ! i i
| e I l e e
l i ! |]
| ESTABLISHED | valid I === | c_execute_r ! place c_execute_r at
| | Execute Response | | | head of receive
| 1 ! | | queue
| e O | SR D
Syntax
Group: FIXED(12)
Member: FIXED(16)
Status: FIXED(8)
Text: VARIABLE
Semantics

Group and Member: specify the channel on which
Execute_Response has been received.

Status: indicates to the SAPI whether or not

an

the

Execute Command was correctly formulated and any requested

action has completed, The field will contain one of
standard Status codes (see c_reject).

Text: contains the service access protocol message.

- 111 -

[

the

{
WERNSIETUTTER ST TTRSEREE labh e, e ey

F Ak S0 EY WAL TN

Sy

PPy

R A S S e A R o S S P

S e

1

v

;
S

PRR G A WA

Y,

N 1’
L (3
- NI

c_ready -
i : |
é{] c_ready
Pl
A -
N
¥ «
Ez ! Cause
4l } - .
fg ; ’ A channel machine .causes a c_ready event in order to notify
g the SAPI that it iIs able to accept data from it.
“
g ‘ Effect
3
i If the SAPI has data queued for the channel machine, it :
) attempts tc transfer the data to it via an s_transmit_c event,
vt and, if necessary, updates the channel interface flow control ‘
X via an s_ready event. i
Channel Machine States
. | T |TTT TSI e |TTTT T {
o | CURRENT STATE | INPUT | NEXT STATE | ouTPUT | COMMENT]
3 | (SUB-STATE) : } ; } }
b e e D e e
"""""""" |7t [I I i
: ESTABLISHED ! (able to accept | - === - | c_ready | { i
| | data from SAPI or | | I } 4
| | previous | | | | !
1 | allocation | | | | i
l | exhausted) l | l |
b e (R e emoee e e mee e I
Syntax
Group: FIXED(12)
Member: FIXED(16)
Msgs: FIXED(8)
{
{ Semantics

Group and Member: specify the channel to which this event
applies. T

Msgs: specifies the number of Transmit_Commands the channel

machine is currently able to accept. The value of Msgs
replaces any previous value,

- 112 -

L

s T MY 3 A, e

S

N

< Gtos N D fmor
LW

<y,

! .{i/m\ W

' . L e .
S ki I 7 T BT TS Y X TR T TS, BN

el

Rl L Sl O Lt

i S e o

< = e g YA

TR T

P —
el

e

o e = RSN 4 et e v < e~

— e

c_reject

Cause

A channel machine causes a c_reject event in order to notify
the SAPI that an s_event appeared inconsistent and has not
been acted upon.

Effect
When an SAPI receives a c_reject event, it enters an error
recovery phase.
Channel Machine States
T | T | i
| CURRENT STATE | INPUT | NEXT STATE | QUTPUT i COMMENT 1
I (SUB-STATE) | I I I I
e R e B oo :
Il any state | (any unacceptable | - - = = = i ¢ reject | loq the error |
| I s_cevent>) | ! | I
(S L b e D e I
Syntax 5
i
Ref: FIXED(?) f
Group: FIXED(12) ;
Member: FIXED(16) L
Reason: FIXED(8) i
i
I
Semantics .
Ref: specifies the unique identifier supplied by the SAPI to i
identify this response to a previous s <event>. ;
- f
Group and Member: specify the channel to which this event
applies.
- 113 ~

A £V p A T B A X ALy e e

SUTWTTT

AP T T e TR e TR T M

Reason: specifies a code indicating why the event referited to

in the Ref field is being rejected. The reasons for rejecting

an event are assigned the following codes:

Reason

Meaning

1

Channel non-existent: the Group and Member
fields of an s_event (other than an s_begin c
or an s_execute_c event) referenced a virtual
channel unknown to the receiver.

Illegal state: an s _event was received
referencing a channel which was in a state for
which the event type was illegal.

Event not implemented: an s_event was received
whose type was 1legal but not implemented.
Currently this can only be an s begin c,
s_execute_c, s_execute_r, or s_status events.

Field toc long: the length of a field in the
s_event exceeded the maximum size permitted at
the installation.

Not used.

Illegal field value or combination of values:
the values of a field in the s_event referred
to by the Ref code contained an illegal fie.d
value or a field value that was inconsistent

-with other field values specified by the

s_event.

Illegal type: the s _event was of a type
unknown to the CPI.

Illegal Group and Menmber: the s event
specified a Group and Memher that is not
accessible te this SAPI.

Group(s) terminating: communication is being
terminated for this Group or fcr all Groups.

Channel in use: the channel referenced iz 1o
5_begin_c event was already assianmci [1.e,,
not in the NULL state).

Reserved.

Reserved.

:
Resegsgag 8,

- 114 -

i

RTAEDW NN

=t

At

.y ———

e et o o,

O R

o e —

. T A et b M A w-rf-w-m»;qwm

e e

c_reject -

36 . No allocation: an s_transmit c event has.-béen
received and discarded because the SAPI has \
exhausted the flow control allocation given to
it via a ¢_ready event. ' .

of ~

37 Bad channel polarity: the high-order bit
the Group field in the s begin_c 'had the wrong i
value, T
38 Channel down: HFP communication is not
énabled. -
39 Command discarded: the channel machine
received a Transmit Command or an

Execute_Command, is in the SENDER DRAINING or

SENDER TERMINATING state, and has discarded
the command without passing it tc the service
“access level.
3
- 115 -
IR, L IESST T L T T R —

c_status

c_status

Cause

R channel machine causes a ¢ =taio<s wueni in order to mnotify
the SAPI of the its star=y.

zy wizet of @ ¢ _status event on the SAPI will depend heavily
: installation.

WY

SR

Channel Machine States

ey

b
F : CURRERT STATE : INPUT } NEXT STATE } ouTPUT = COMMENT i
El 1 (SUB-STATE) | !]]]
1 .] b e e I
1 I] | I I i
] any state | acceptable | = ===~ | c_status | determine status |
] | s_status | l |
I i O I e | !
- . Syntq&
’ }
, Group: FIXED(12)
{ Member: FIXED(16)
- State: FIXED (8)
Snd_Msgs: FIXED(8)
Rcv_Msgs: FIXED(8)
2 } Semantics
: Group and Member: specify the channel to which this event
| applies.
Hood
; State: contains a value indicating the current state of the
x channel machine. The encoded values of the states are:
] NULL
1 SENDER_PENDING
i)
'
1 - 116 -
2 !
5. 1

[3,
' '
o
4
{

T el o

- ¢_status

RECEIVER PENDING
SENDER_TAKING_BACK
RECEIVER_TAKING_ BACK

ESTABLISHED -

‘SENDER_DRAINING - .
RECEIVER DRAINING
SENDER_TERMINATING
RECEIVER_TERMINATING

WONAUVE WN

Snd Msgs: contains the number of events the channel machine
can pass to the SAPI within the 1limits of the channel
interface flow control.

Rcv Msgs: contains the number of eveéents the channel machine is
able to accept.

- 117 -~

I . N o TR I e TS TR T e T g NIRRT AT, TR T AR AT AT

F . c_transmit c]

i
et}

c_transmit_c

Cause

A channel machine causes a ¢ transmit c event in order to pass

I the TEXT field of a Transmit_Command to the SAPI.

!
‘ {
‘ Ef fect
] When a SAPI receives a c_transmit_c event, it processes the ’
F data transferred from the channel machine and, if necessary, ;
, updates the channel interface flow-control via an s ready
3 ' event. -

Channel Machine States

- S S S R | Y W WS RS S o e Y T et o 48 (O 4 R P 06 %6 S e S 0 08

;] 1 ! | | |
! | CURRENT STATE | INPUT | NEXT STATE | ouTPUT | COMMENT |
|] {SUBR-STATE) | | |] |
| e cc—————— e ————— S, [TR |
! | ! ! | |
| ESTABLISHER | acceptable e | c_accept; | j

| (with data | s_ready | | ¢_transmit_c(s) | I .

| queued for | I) | } !
I SAPT)] | { 1 |
| e ———— S I FEO S !

| | ! | 1 ! ,
| ESTABLISBED | valid | ===~ | c_traasnit ¢ | update flow control |
| (with data | Transmit_Command | | Transmit_Command(s) | |
! | queued for | | | I I
! | apposite | | I | |
! I cPl) i 1 ! | 1
e | e ma————— !
| l ! |] i
| ESTABLISHED | valid | ===~ - | c_transmit_c | update flow control |
| {with no | Transmit_Command | | Transmit Response(s)| |

1 data queued | | 1 { I ¢
for			1
apposite i i			
CPI) I] I		
O R et	e		
	!		

| RECEIVER_ | acceptable | = ===~ I c_accept | | ;
. | DRAINING | s_ready | | ¢_transnit_c | 1
4 f } (with data | | | |]
! 1 queued fnr | | | I |
| SAPI) | ! | |]

1 oo R I e e ! .
| | | ! 1 1 .
| RECEIVER_ 1 (last | RECEIVER_ | c_end_c | |
| DRAINING | c_transmit_c | TERMINATING | ! |

’ | | passed) I | I I

' D S S | e e —————— |
i

.

1 .

; .

3 - 118 -

AES S

LAY ERUSERS R SRS A

AT NS,

Syntax

Group:
Member:
Control:
Text:

Semantics

Group and Member: specify

FIXED(12)
FIXED (16
FIXED(8)
VARIABLE

Transmit_Command ‘has been received.

Control: undefined.

the wvirtual

.

channel

v

4 e o s rem s St o e e 8 e e

i

c_transmit_c-

on

Text: contains the service access protocol message.

~ 119 -

which

a

s_begin ¢

s_begin_c

Cause

An SAPI causes an s_begin_c event in order to request its
to establish a host to front end channel,

CPI

i
If the CPI detects an inconsistency in the s_begin_c event, it
causes a c_reject event. If no inconsistency is detected, a
channel machine is initialized which then sends a
corresponding Begin_Command.
Channel Machine States
[TTTTTmm e R |TToTmTm T | | T I
| CURRENT STATE | INPYUT | NEXT STATE | OUTFUT | COMMENT J
| (SUB-STATE) | } | l |
e Tt e o i : i
{ NULL | acceptable | SENDER_ | c_accept | initialize channel | !
! | s_begin_c : PENDING : Begin_Command : machine ; ¥
I |
""""""""""""""""""" I Y e |
! any other ! s_begin_c |l - -=--- I c_reject I log the error |
] state | (acceptable or | | | |
] | unacceptable) | | | |
e e e e e e e e e |
Syntax
Ref: FIXED(?)
Group: : FIXED(12)
Member : FIXED(16)
Service: FIXED(16)
Text: VARIABLE
Semantics
Ref: specifies a unique identifier supplied by the SAPI to §
identify the response to this event via the c_accept or
c_reject events.
- 126 -

-~

s_begin ¢

Group and Member: specifies the virtual channel to be
established. If this field is zero, the CPI will choose the
Group value. ,

Service: specifies the number of the SAPI to which the virtual
channel is to be established.

Text: contains the service access protocol message.

- 121 -

el R Sl e bt O P WL sk TE

A Y

- A - St - - e
% s_begin r A : -
1 ‘ .
] s_begin_r
3 !
10
>{ i
!
R !
1 { ‘Cause
Py T
| An SAPI causes an s_begin r event in order to respond to a
i c_begin_c event.
*
i

Effect
5 If the CPI detects an inconsistency in the s_begin_r event, it

causes a c_reject event. If no inconsistency is detected, the
channel machine then sends a corresponding Begin Response.

Channel Machine States

- T 4 o o e) T P O P e e Y o R 3 i A (o e o o 8 e B S A o e e A

| | | |
| CURRENT STATE | INPUT | NEXT STATE I OUTPUT | COMMENT
| (SUB-STATE) | | ! I !
| e e U]
1] | | | |
| RECEIVER | acceptable | ESTABLISHED | c_accept | |
| PENDING | s _begin_r | | Begin_Response I |
i | (Status=g) | | (Status=6) i |
|] e e e m—— |
| I | 1 | |
| RECEIVER | acceptable | NULL | c_accept | |
i PENDING | s_begin_r | | Begin_Response | |
] | (Status¥a) | | (Status¥a) | I
| S e e e 1
i | | | | |
| RECEIVER_ | acceptable | | c_reiect | |
. | TAKING_BACK | s _begin_r I] | |
.] | (Status=a) | } | }
b oo | L | |
t |] I |
: | REGEIVER | acceptable + NULL | c_accept 1 |
‘ } TAKING BACK | s begin_r l | Begin_Response | |
:] - | (Btatus?0)) | (Status#6) I {
| | | |
l | ! I | |
[any other 1 s_begin_r | - ===~ I ¢_reject | log the error
| state | (3acceptable or | | | |
|] unacceptable) ! | I I
e | T | e | e e e |
¥
Syntax
i
¥ Ref: FIXED(?)
Group: FIXED(12)
z Member: FIXED(l16)
o - 122 -
i
A
k. ' . . t - e

Nt el

T e T R S T
7

A w

o

e

o

POR TSy

Status: FPIXED(8)
Text: VARIABLE
Semantics

itttk i |
- T

s_begin r

Ref: specifies a unique identifier supplied by the SAPI to

identify the
c_reject events.

Group and Member: specify the
c_begin_c event.

response to this event via

channel

Status: indicates to the channel machine whether

to establish d channel has been successful.

the c¢_accept or

referrz=d to by the

the attempt

This field wilil

contain one of the standard status codes (see c_reject).

Text: contains the service access protocol message.

- 123 -

i NN I

. UL & I I A
o R S A AP OR

e 0 e

~s_end-C

s.end c

WW, e

Cause:

An SAPI causes an s_end_c event in order to terminate access
to the service.

o W 8 s o

Ef fect

ol

TR T ETTR P T s,

If the CPI detects an inconsistency in the s_end ¢ event, it
causes a c_reject event. If no inconsistency is detected, the
channel machine then sénds a corresponding End_Command.

o ez — - =

> E " T T e R T TR I,

Cad

RONP:

P e L

- g e

M AT

I3

BTy

s LR SRR

‘“ "’q“"\""”!"‘"‘ﬂﬂ

| flushing or non-

- g?,_ -
B L
- - q, .
Ly ¢ .
N
Channel Machine States
1 | i |
CURRENT STATE | INPUT 4 NEXT STATE | ouTpur § COMMENT
(SUB-STATE) | i l H
I | i i
| | | . l .
NULL | acceptable . = ===~ I ©_accept - |
| s_end c ! ! End_Command I
{ (flushing, from ! I (flushing) -1
| HFP Maintenance | | { .
| Service) i ! i
| | | i
| |- - | |
SENDER_ | acceptable | SENDER_ | ¢_accept f
PENDING | s_end_c (flushing | *AKING_BACK ! Zné_Command |
| or ron-flushing) | | (flushing) I
—— oo | | {
|] I : |
RECEIVER_ | acceptable } NULL | c_accept 1
PENDING | s_end_c (flushing | | End-Command ~ I -
| of non-flushing) | | (£lushing) |
______ U | | ——_
i N I | [
SENDER_ | acceptable | ===~ = Il ¢ _accept |
TAKING _BACK | s_end- ¢ {flushing | | End _Command |
| or non-flushing) | I (flushing) |
——— N l ——_—— 'l T
| | | |
RECEIVER_ { acceptable | NULL | c_accept |
TAKING BPCK | s_end_c (flushing | | End _Command |
| or #on-flushing) | | {£1Ushing) :
__________ I ——— Y B e e
| | i I
ESTABLISHED | acceptable | SENDER_ I c_accept | discard any queued
| s_end_c ! TERMINATING |' End_Command | data
I {£lushing) | 1 (£Yushing) |
————— | —— U B DR ————
| | | |
ESTABLISHED | acceptable | SENDER_ | ©_accept | discard any data
{with data | s _end ¢ (non- | DRAINING | | queved for SAPI;
queued for | fTushing) | } | send data to
apposite | | I | apposite CPI; place
cPI) | | | i End_Commané (non-
| i | | flushing) at end of
| I | | send queue;
| I S | acknowledge but
| | | | discard any incomina
| | | . messages
________________ SN SO S SOV S
1 | I |
ESTnBLISHED | acceptable | SENDER_ | ¢_accept { discard any data
{(with no | s end ¢ (non-] TERMINATING | Pnd Ccommand (non- | queued for SAPI;
data queued | f£IughTng) | | flusShing) | acknowledge but
for | I | I discard any incoming
aoposite | | | | messages
CPI) | I | [
_________________ S NN U S
| | | |
ZENDER_ I acceptable | SENDER_ | c_accept | discard any aueued
DRAINING | s _end_c I TERMINATING | End _Command [data
I (flushing) | [(£10shing)
A . eme———— b e ——— | e b e e ———
]] 1]
RECEIVER_ | acceptable | NULL I c_accept | discard any dsta
DRAINING I s _end_c (f.ushing ! | End _Command] queued
| or non-flushing) | I (£10shing)]
__________ S S U DO U SO
| | | 1
SENDER_ | acceptable | =~ - =~ | ¢_accept |
TERMINATING | s_end_c (flushing | | End_Command |
I otf non-flushing) | I (flushing) |
_____ [F T N S
| | ! |
RECEIVEP | acceptable | NULL I ¢_accept
TERMINATING | s_end ¢ (flushing | | End_cCommand !
: or non-£flushing) ! : (flushing) :
i | I - | ”
any other | s_end_c - === - | c_reject
state | (acceptabla or | {
] unacceptable, i I
|
| |
I]

I £flus%ing)
I

eRTC

s
- i.,\.'J

[U N

N
Npevy

T v o

A ~ = 7 = 0 = T &R L Te gy, A Sl
- A T T TR A TRV AR T RRY AR (T T ST TR wngmfwmm
) - - & G

s LN S R AT e o — w

281 <
E .
! S ntax
Syngax
4 ¢ Ref: .- . FIXED(?) : : o
G Group? FEXED (12) . 7
oo L Member : FIXED(16)
e | - Control: FIXED(8)
El " Text: VARIABLE
il
2 f(
o Semantics
¥ -
.
% 1 _Ref: specifies a unique identifier supplied by the SAPI to
&y Tdentify the response to this event via the c_accept or 9
y ! c_reject events. 4

% . Group and Member: specify the channel to be terminated. if
bl the Group is not zero and the Member is zero, all channels

! with the same group are to be terminated. If both Group and
I Member are zero, all virtual channels are to be terminated.
| % Control: The Control field bit has the following meaning:

? Flush away: (bit 1 = 1) means immediately flush data
] Wwhich 1is dueued going away from the sender of the
¥ End_Command and terminate the channel. If this option
% is not requested (i.e., if bit 1 = 8), the %nd_Command :

is not to take efféct until all data queued going away
from the sender of the End_Command has heen processed in

- the normal manner. E
' Text: contains the service access protccol message.

7 I o e et <

:‘W“«N g a ey
i
[
N
[«
!

-

e ook e e

LY

1!
o
8

B

An SAPI causes 2a s end r event

b
“\
V‘l‘
"

c end c event.

Effe ect

If the CFI detects an inconsistency in the s ené r event,
causes & C rejﬂct event.,

3 esd r

channel machine then sends a corresponding End Response.

Channel Machire States

———

i ' 3 a ’ t .
§ CORRIIT TTATE ¢ OISIOT i ¥z ST33= i ooTzow 1 Coemawy 1 -
] 1Iooe-s1aTER f] X B ’ «
1] 1 1 1__. i ;
s L i 1 H] i
1 s § 2oTeprable f - I c_accepz 1 1 i
! 2 5 222 r (from 72 | i Exd_Respense ' 4 5
]] maiziznasce 1] L] * by
] § Sexvice) i] L4 L] i
1 —--.t ' " __ ¥
H i 1 ? 1 g 1
i RETZIWER I acceprable I xcie } € accepz 1 ! 1
1 PEESS 2A0% | 5 end ¢ 1 1 2=&_Rescocse z !
L §] L] * i 4
H . 1 : 1 L) :
} RETEIVER 1 accepiable 1 >vig = Aceept 1 i]
1 TERNILATING | ~_end 1 [] f Zad Beszonsa 1 H
- s i i 1 1 B
i]] 1 L] ¢ N
i 2ny other t 5 end =« -~ - 1 ¢ sefect] £ §
H state i (scceptadble or f i 1 ! .
1 1 vraccestatle)d] i i] §
1 1,] 1 .t _t -
3
=
3
1
-1
Syncax 4
R=2f: FIXED(?)
Group: FIXED(12) 1
Member: FIXED(15) I
Status: FIXED(8)
Text: VARIABLE
L.
é«
-~ 127 - ?
— - - - e S ——— —-—-
e ————————_

in oréer to resodond to a

it
If ro inconsistency is detected, the

LT e

7,’“

-

o W
3

\
,

]

s end r

Senmantics

Ref: specifies a unigue identifier supplied by the SAPI to
1dent1fy the response to this event via the c_accept or
o re]eyt events.

L 3

Group and Henber: specify the virtual channe: referenced in
the c_end c event to which this is a response.

B

{

Status: indicates to the chanmel machine whether or not the
c_ end ¢ event has been successfully completed. This field
will contain one of the standard Status codes (see c_reject).

|
E
|

T

Text: contains the service access protocol message.

v

A%

iy

S e et s e I ARV T I ALY T ..
¢ X ’ - ;
.

-

Ly

el T WP FR R TRy N
4+
\
.
[4
.
¥
'
.
o
O
N
;
gy
o
\)\n
' i)
%
3 s

TR
- e s

L

- —_—

Ty

g
e

g

oy

PO SB—

‘. e i et e v g . o —_— ——— e e a i e o e i—-
s. execute_c
’ '
J
s_execute_c -
) Cause
' An SAPI causes an s_execute c event in order to send data to
1 > 3 . o ol
its apposite outside the normal flow of data.
Effect |
l
If the CPI detects an inconsistency in the s_execute c event,
it causes a c_reject event. If no inconsistency is detected,
the channel machine then sends a corresponding
Execute_Command.
Channel Machine States
T | T B R I
| CURRENT STATE | INPUT | NEXT STATE | OUTPUT | COMMENT 1
I (SUB~STATE) | I I 1 I
D SR | e U |
i 1 1]] !
| <STABLISHED | acceptable | == === | c_accept [place |
1 | s_execute_c | | Execute_Command | Execute_Command at |
| I (Ssynchronize) | I | end of send queue |
! I 1]
¥ II """"""""" |77 T T : ------------------- T 1
| ESTABLISHED | acceptable [- -—- | c_accept | place H
l | s_execute_c | | Execute_Command | Execute_Comwmand at |
| | (expedite) | | | head of send queue 1
D | | e ————— |
| | i | | | |
| RECEIVER_ | acceptable | - - I ¢_reject | discard the message |
| DRAINING | s_execute_c ! ! | | ,
| 1 §
| ! l { ! | :
| any other | s_execute_c | ===--- | c_reject | log the error |
| state | (acceptable or l | I |
| | unacceptable) I 1 } | &
| D e D e e | ;
#
Syntax ’
Ref: FIXED (?)
Group: FIXED(12)
Menber: FIXED(16)
Control: FIXED(8)
Text: VARIABLE
- - 129 - E
T] /) o e i AR AN A e ‘ S
z, (TN - ~ " - — e e R pgeiy oy

R T W

e T TR

RS

I
.
F
5

s

LL?’

b, st

-t et o

s_execute_C

Semantics

Ref: specifies a unique identifier supplied by the SAPI to

identify the response to this event via the c_accept or
c_reject events. ‘

Group and Member: specify the channel to which this event
applies.

Control: The Control fiéld bits have the following meaning:

Attention: (bit @ = 1) means inform the SAPI module of

the arrival of an Execute_Command with the Attenticn bit
set.

Synchronize: (bit 3 = 1) means place the Execute_Command
at the end of the Sending Queue of the local CPI.

The Execute_Command is executed at the remote CPI as follows:

If synchronize,

place the Execute_Command at the end of the queue
of data to be read by the SAPI module;

otherwise,

place the Execute Command at the bheginning of the
queue of data to be read by the the SAPI module.

if attention,

immediately notify the SAPI module of the arrival
of the Execute_Command.

The meanings of the various bit value combinations to the
remote CPI are summarized in Table 1.

Table 1

EXECUTE Command Control Field Bit Values

Bit

9123 Meaning

g6 Place the Execute Command at the head of the
Receiving Queue,

1000 Place the Egecute Command at the head of the

Receiving Queueueue and notify the SAPI module
of the attention,

- 139 -

= , BT D 5 & PSR

TR I TR TN T T R T

—ml e DL -

s_execute_c
0001 Place the Execute_Command at the end of the
Receiving Queue.
1001 Place the Execute, Command at the end of the
Receiving Queue. Notify the SAPI module of the
attention.
Text: contains the service access protocol message.
§~ '
o
o
‘E‘ H
o
o
el
‘.
j
o
L
P
f
L
1
|
- 131 -
N - R e T A " wa - B
:%': L, I wo e - " 7 . N . § '.,"f":'//‘f&M’?éﬁ-. FRNREC

s_execute_r

s_execute_r

Ccause

An SAPI causes an s_execute_r event in order to respond to a
Cc_execute_c event.

Effect

If the CPI detects an inconsistency in the s_execute r event,
it causes a c_reject event. If no inconsistency is detected,

the channel machine then sends a corresponding
Execute_Response.

Cnannel Machine States

2 o P o e A i e e R S A e o e o e e e 0 o e A0t T e e e

] ! I ! i
CURRENT STATE | INPUT | NEXT STATE | OUTPUT | COMMENT |
] {SUB-STATE) |] |] [
b e | e | !
! i I ! | |
| SSTABLISHED | acceptable | == === | c_accept | place
| | s_execule_r ! | Execute_Response | Execute_Response at |
| P - - | | | head of send queue :
 F | e e | et
fTTTTTTTTTTTTTT f 1 | | |
| RECEIVER_ | acceptable | == === | c_reject | discard the message |
l DRAINING | s_execute_r : : : l
SN SRR DRSS OO
1~ | | |] |
I any other | s_execute r Il == === I ¢_reject | log the error
| state | (acceptable or | | | i
| | unacceptable) | i] I
D U e e e !
Syntax
Ref: FIXED(?)
Group: FIXED(12)
Member: FIXED(16)
Status: FIXED(8)
Text: VARIABLE
- 132 -

s_execute r

Semantics

3
1
1

Ref: specifies a unique identifier supplied by the SAPI to

identify the response to this event via the c_accept or
c_reject events. .

P

T A

Group and Member: specify the channel to which this event
= ; applies.

Status: indicates to the channel machina whether or not the
5 Execute_Command was correctly formulated and any requested
action has completed. The field will contain one of the
i standard Status codes (see c_reject).

Text: contains the service access protocol message.

W TR g Y

: - 133 -

ey w,’ m/ mf \J * -."; -

s_ibentify

é_identify

Cause

to its CPI.

Effect

When a CPI receives an s_identify event, it
validate the SAPI. The attempt may fail if the SAPI already

attempts

An SAPI causes an s_identify event in order to identify itself

to

, exists or if it is not privileged or if an inconsistency in
; the s_identify event is detected. 1In this case, the CPI will
: cause a c_reject event. If the CPI is able to wvalidate the
i SAPI, it will cause a c accept event.
o4 —
E Channel Machine States
|~TTTTTTTT 7T |7 B ! cTTTITITTTTTT i
| CURRENT STATE | INPUT | NEXT STATE I GUTPUT I COMMENT |
| (SUB-STATE) | | | 1 I
e e e e e | e I
I f I I I |
| NULL | acceptable [== === | c_accept | register the S:pI |
:] | s_identify]] |]
‘ e b e e l e e | I
: I | i I I I
| any other | s_identify Il ----- | ¢_reject 1 log the error !
| state | {acceptable or ! | i i
| | unacceptable) I I ! |
e e [e | I
Syntax
; ‘ Ref: FIXED(?)
; Service: FIXED (16)
1
Semantics
‘ Ref: specifies a unique identifier supplied by the SAPI so

event.

that it can identify the eventual c¢_acrept event or ¢_reject

I AR

’

L

Ly
™ AR

>

RO NSTRIURSIIR

- vy

e apr——r—

TV R

R, Y

. e e ,
b e it e~ = g

I

s_identify

Service: specifies the number of the SAPI which is to be
validated with the CPI.

Note: To provide prrotection against a process masquerading as

an SAPI, some sites may require additional fields for
validating an SAPI.

Rl % el S

i
b
4
H
I 2
v ;
i
S)i .
g
9
i
{
< q
)
b
1
3
§
L Al
i
;
i
| ;
=
! :
‘ :
‘ - 135 -~ 3
!
‘“*" 1 ey 5
b s Yo -

2
s_ready)

i , %
'% s_ready : g '
. -

i . -
|

i Cause ‘

P An SAPI causes an s_ready event in order to notify a channel '

. machine that it is ablie to accept data.

|

—— v

Effect

i

e If the CPI detects an inconsistency in the s_ready event, it
‘ causes a c_reject event. If no inconsistency is detected, B
i then if the channel machine has data queued for the SAPI, it
r . attempts to transfer the data to the SAPI via a c_transmit c
event ané updates the channel interface flow-control.

Channel Machine States

o o e et | 0 i e e o B B T | e 8 o e o

I | }
| CURRENT STATE | INPUT | NEXT S5TATE { OUTPUT | COMMENT I
| {SUB-STATE) | | I i
________________ SN R RS
l | | | 1
| ESTABLISHED | acceptable] == === , C_accent I]
l (with no | s_ready | I | i
i data queued | | | I |
| for SAPY) | I | | I
| | | e | I
I 1 I | | |
ESTABLISHED	acceptable j = === I c_accept		
(with data	s_ready { I ¢_transmit_c(s)		
queued for			I
I SIPI)	I I		
	e e e		U
		I	
RECEIVER_ ! acceptable	= ===-	c_accept I !	
DRAINING I s_ready		c_traasmit_c	!
1 (with data	i		I
queued for	I		
l SAPL)]		[
	b e	I	
] I !			
any other I s_ready] == v - -	c_reject	log the error I	
:	state	(acceptable or	i
]	unacceptable)]]]		
} b e	b e e	e 1	
]
- Syntax
i
} Ref: FIXED(?)
% Group: FIXED(12)
J Member : FIXED(16)
: Msgs: FIXED(8)
)
d - 136 -
Yo
R R I A R S “ e -
4; ~ “ ! ~ve V- - v 53 - -

TR IR

LT T T

o jooy
rSsRy R

‘
L]
t
;
i

2N

d——— e

‘Semantics

Ref: specifies a unique identifier supplied by the SAPI to
identify the response to this event via the c_accept or
c_reject events. :

Grcup and Member: specify the channel to which this event
applies.

Msgs: specifies the number of Transmit_Commands the SAPI is
able to accept. on this channel. The value of Msgs replaces
any previous value.

- 137 -

[

INPNEY

Y T o e NG A et

R R . . -~ ewf et AR

. -~ -
bl S o ks = LRt e O . . x

s_status :

. Cause

An SAPI causes an s status event in order to obtain
information about the status of a channel.

Effect

e e A N

{. When a channel machine receives an s_status event, it is to
3 determine its present state and cause a c_status event to
notify the SAPI.

Channel Machine States

| CURRENT STATE OHTPUT

l (SUB-STATE)

%

acceptabdle] ===~ etermine status

s_status

c_status

- —— ¢

- - N

Syntax

Ref: FIXED(?) ‘: S
Group: FIXED(12) :
Member: FIXED(16)

Semantics

Ref: contains a unique identifier supplied by the SAPI to
identify the response to this event via the c_accept or
c_reject events,

T

Group and Member: specify the channel on which status has heen
requested. T

] . - -

. - e e ST T T A T, R i MRS T T T T T il ’
y - - L e e el o 2 - - . , ot ey 2]
s_transmit ¢ I
- s_transmit_c -

] : Cause

P ﬁ - - -

P - An SAPI causes an s transmit ¢ event in order to <end flow-
p--¢ P - - .

3 controlled, in-order data to its apposite.

T
-

. Effect

) If the CPI detects an inconsistency irn the s_transmit _c event, .
= it -<causes a c_relject event. If no inconsistency is detected, -
% the channel machine then sends a corresponding

Transmit Command. 1f the channel machine determines that the .
channei interface flow control should be updated, it also
causes a ¢_ready event. '

" VTR T
P

Charnel Machine States i

g T
. el s el

E
]
“ . 1~ I ' ! 1 :
§ CURRENT STATE | INPUT | NEXT STATE [suTPuT 1 COMMENT f H
! {SUB-STATE) | { 1 | i ‘
| I l I e l
] f i] i
I ESTABLISHED | acceptable I - ---- | c_accept ! i
| s_transmit_c l | Transnit_Cornand I :
| N I_ I e] ——— - I
! i I i I ! !
1 RECEIVZR | acceptable f ===-=-- | c_reject I discard the nessage | 3
| DRAINING } s_transnit_c I ! ! 1 -
S e e e | f e S A ! {
I I ! ! { i 5
| any other I s_transnit_c | - ===~ I c_reject i log the error ! A
I state ! {Zcceptabl® or H | i i)
] | | unacceptable) I l | |
; b e m————— D e | e ———— !]

E, Syrtax !
j Ref: FIXED(?)
Y Croup: FIXED(12) <
: Member : FIXED(16)
1 1 Control: FIXED(8) ;
1 Text: VARIABLE

o A o s S gl M
“

. "
- T
H n
N - 139 - :
3 ;
:
'3 ot g P . . o -
g’ R o T LT Y 2 pro NEANET e |,
f < ESaig e L. o N o 3
- M .. RSN NS LT
| . ' - - S ot i DaspmR o o
.z -
R A o -

v el

S LR - pl P
kwﬂﬁﬂ!!2ﬂ%aE%ZEzEﬁQEﬁﬂuﬂnsagagzﬁewzsmimsﬁgxmumnswf . e cararis -
e =% i .

o 5_transmit _-c : PR

3 ')

H . .

r -

1 ;

} - -

i Semantics .

ggﬁ: specifies a unique identifier supplied - by thé SAPI % to
identify the zesponse to this event -via ‘the c_accept or
c_reject events. : ’

. Group and Member: specify the channel to which this -event
applies.)

; Control: is undefined.

t C Text: contains the service acces$s protocol message.
%

- —— Fo—

v ——

oy

S Sk

wa

e

TR
_—

DS AN

.

- 140 -

EE
Ve e e sy) Y,

. Q , S e O PO TS IR, N YD A0 Pt S amen o
5 " —— =

S
[N
i

37

Ao

I3z

g A St A o A S s T bt i e S = o

——
v

g Play

b

e

Y s A ——— gy

Izivializimy Bost ~ Frome Tnd
Comrmicet*om

INETERLEZING BIST — FRINT END ODMWISICLTION

Tc initialize (or reéstart) fost — froat enf comeoicatics,
follewing segquence of stzps must e takem:

BOST:

BOST:
E z

FRONT

HOST:

BOTRE:

HOST:

HOST:

1)

2}

43

5;

7)

3)

9)

END: 19)

The bost T2 Wainteteace Service carses
an s end ¢ evert with Greos=wenZer=2.

The host (P cacses = floshiny c end ©
event Sor =zch charyel 2y sexds a2
flusking End Tommand with Gromp =
Momber = @ o t.e front end CPE.

The front end CPE causes 2 flushipg
c end ¢ event for esch chRzael a»d
sends az End Response with Srowp =
Menber = @ &2 the bhost CPE.

The ost CPI czoses a2 ¢ end 7 ewent for
the host EFP Mainrtenance Sereice o
indicate that all cornections have baen

terminated.

Zf pecessary, the kost 2md £the £ront
end reinitislize I1ipk Zew=l
comnunication. HDow his is done IS
instaliation depeandent.

The host BEP Mainienarnce Service czuses
2n s begin < event.

The hest CPI sends 2 Begin Command with
Service code = <HF? Maintenance Service
Code>.

The fromnt end CPI causes 2 ¢ _kegia ¢
avent for the HFP Maintemaace Service.

The front end HFP s aintenance Service
causes an s begin r with Status = 4.

The ront end 10191 sends 2
Begin_Response with Status = €.

The host CPI causes @ ¢ begin r event
with Status = £ for the HFP ¥aintenance
Service.

the

When the above steps have been conpleted, host — fron* end
mnay

communication

established).
Q

proceed (i.e., wvirtuval channels nay

be

T .

v

e i b o wll ke o S i o Ko

AI"\ e - > YUY S .) .
sz iy nyy 40f] PRI Y AT MY AN SIS 5 e e L I _

& ot b s s o e

- 142 -

BLANK PAGE

o " z P W SO : A m»?.ﬁﬁL
e e kS A\t i s mad Littis s e s R N ™ 5 e

4T
\

o | i it I

e

AR

3

—e e

i

Ko e o e]t dm ke ol ey
N

" Spécifying Service Access Protocols

-

-

. SPECIFYING SERVICE ACCESS PROTOCOLS

. co- Introduction

Together, the link and channel protocols provide a reliable
wirteal communications medium for the service access protocols.
Each service access protocol provides the host with access to a
specific service offloaded fo the front end, e.g., a network data
transport service or a network virtual terminal (for a detailed
discussion, see Day, J.; Offloading ARPANET Protocols to a Front
End, CAC Document No. 238, 1977).- Since each service access
protocol defirition depends on the service to which it provides
access, the service access protocols cannot be specified 1in the
present document. However, to ensure uniformity, consistency,
and completeness, the forms that service access protocol

specifications and adaptation descriptions (see below) should

follow have been specified.

Specifications and Adaptation Descriptions

Each service access protocol is described by

a) a service access protocol specification, and

b) a set of service access protocol adaptation
descriptions.

A service access protocol specification defines the rules for

- 143 -

- RPN 2%
. A R . . -

L.

s

»i

PREPURR R A

e s e 92 o S W S S e N s g W e . o 2 o o e o o 2o nerahby iy et

e s

S R S LA P e M T oy

Specifying Service Access'Protocols

communiication betweén apposite SAPI5 in the host and in the front
end. The unit of service access protocol communication is the
service access protocol message. Service access protocol
messages correspond to channel protocol messages, i.e., there is
a service access protocol begin _command corresponding to the
channel protocol Begin Command, a service access protocol
transmit_command corresponding to the channel protocol
Transmit_command, etc. (To distinguish service access protocol
messages from channel protocol messages, service access protocol
messages are written all lower-case.) Service access protocol
messages are carried by the TEXT field of the corresponding
channel protocol messages. Thus, specifying a service access
protocol amounts to defining the TEXT fields of the channel
protocol messages in terms of the corresponding service access

protocol messages.

Since choices must be made 1in implementing a service access
protocol for a given host and front end (e.g., in handling

mismatch between host and front end word sizes and/or character

sets), an adaptation description describing these choices must
also be made for each implementation of the service access

protocol.

IRENE S

How LY

S

TN T

T T g

et v e e _

T

~ Uy e e e e a e e e e e e e —

Specifying Service Access Protocols

Service Access Protocol Specifications

Each service access protocol specification shall have the
following form:

<name of the service to which access is provided>
Service Access Protocol
Specification

I. HFP Code Number for the <to be accessed> Service:

Give the HFP Code Number for the service to be
accessed.

I. Description of the Service to he Accessed:

Describe the service to be accessed. The description
of the service is to include:

a) its purpose,

b) background information,

c) an overview of its operation,
d) optional features,

e) supporting services that must also he
implemented, and

f) an overview of the offloading strategies relevant
to this service,

g) references to relevant documents.

I1I. Message Use

Describe how each service access protocol message 1is
used. The messages are to be discussed in the order:

begin_command (Section III.A)
begin_response (Section III.B)
end_command (Section III.C)
end_response (Section III.D)

N A e R o RS

spe—

Specifying Service Access Protocols

execute_command (Section III.E)
execute_response (Secticn III.F)
transmit_command (Section III.G)

Note: the TEXT field of a Transmit_Response is never
passed to an SAPI by a CPI. Therefore, there is no
service access protocol transmit_response
corresponding to the channel protocol
Transmit_Response.

The description of each message is to have the
following form:

ITI.<X>.1 When Sent

Describe the circumstances under which this
message is sent.

IIT.<X>.2 Action on Receipt

Describe the actions to bhe taken by the
receiver of this message.

ITI.<X>.3 Syntax

Define the syntax of the service access
protocol message, Include the minimum
length of each field. For the detailed
format of this section, see "Specifying
Fields" below.

III.<X>.4 Semantics

Define the semantics of each field defined
in III.<X>.3 "Syntax". Each definition wili
include at least:

a) the meaning of each value for each
field,

b) the restrictions on the values for each
field,

c) the default value for each £field and
how it is expressed, and

d) the interaction of the values of each

field with the meanings of other
fields.

- 146 -

.

A&

o —— e

o e v

Specifying Service Access Protocols

-

Specifying Fields

Service access protocol messages are carried by the TEXT field of
their corresponding channel prétocol messages. TEXT in channel
protocol messages consists of fields. The value of each field
represents a datum. The datum may be simple, e.qg., a network
port number. Or the datum may be a complex of data, e.g., the

set of parameters necessary for initiating a network connection.

The data represented by a field may always require the same field
length, e.g., ARPANET socket numbers always require 32 bits., A
field representing such fixed-length data 1is called a fixed
field. It consists of a bit string (at least) long enough to

represent the data.

The data represented by a field may require wvarying field
lengths, e.g., user names consisting of character strings. A
field representing such variable-length data is called a variable
field. It consists of a fixed length count part followed by a
bit string content part. The content part must be long enough to
represent the datum. The value of the count part is the length
of the content part. The length of the count part must be chosen
to be large enough to represent the 1length of the largest
conceivable content part. This length may be expressed in bits,
characters, bytes, words, or any other convenient units. The
units must be specified together with each field 1in the Syntax
section (if known when the service access protocol is specified)

and in the adaptation description.

- 147 -

2

ST

e
L v aaar

PN

o e e s oo T ot 47

Specifying Service Access Protocols

The data represented by a variable field may be complex, and the "

fields representing the values -of the data may themselves bhe
fixed or variable, simple or complex. 1In some cases, it may be
deéirable to have a fixed qualifier fﬁeld as the first field
representing a complex datum. This qualifier field will aid in

the parsing and interpretation of the rest of the fields.

A service access protocol specification describes the features of
the service access protocol common to all implementations. Word
sizes and convenient data alignment bhoundaries may differ among
implementations. Therefore, a service access protocol
specification cannot prescribe the field formats for all
implementations. But a service access protozol specification can
and must specify what fields are to be present, their content,

and their minimum lengths.

A fixed field is to be represented by:

<field name> : FIXED(<length>)

A variable field is to be represented by:

<field name> : VARIABLE (<count part length>)

A complex field is to be represented by:

<field name> : COMPLEX (<count part length>)
<field name> : ..cuveene

. *

<field name> ¢ ..veveoes

where hierarchy of structure is indicated by indentation.

- 148 -

e crm me W

e o SASIgY e et

o i et Pl s

h-

TR

Specifying Service Access Protocols

Defaults

The default-value is expressed by:

a) the absence of the field, if it is part of a complex
field and all subsequent fields which are part of the
complex field are also absent;

b) zero length, if the field is a variable field;

c) a predetermined value (e.g., zerd), if the field 1is =3
~fixed field which does not meet condition a).

4t g n

PRI LAY
-

i
4
4 -
”
N
|
-
€
H
A
4
"4
‘ "‘
[|
1
-~ 149 - I
3
L
?
——) b
A2y < Lk
- Ny . N 3
e : : . L AL s ER
—— L e et "2 PR L Y e T o i e e e L T P TR VRO Y ST

_,_ﬁac:-x:\‘-\ B f!&a:w? ’

e S,
" "
PP, SRR

v TP W T -
e e o v e o o

SLAS e

DA S

v
o o e G e ot oo N+

S S —
T e T

< om -
S s e g o M e = e e v e

Lol iy,

v, /AL T
S

Adaptatidn Descriptions

Each service accéss protocol adaptat1on descrzptlon shall have

Adaptation Descriptions

the following form:

<name of the service>
Service Access Protocol
Adaptation Description

Section I. Description of the Adaptation

I.A

IQC

Service Access Protocol

Give the complete reference citation for the
service access protocol specification on which
this adaptation 1is based, including document
numbers, date, etc.

Applicable Hosts and Front Ends

Present a table showing the classes of hosts and
front ends for which this adaptation is intended.

Supported Facilities List

Present a table showing the optional facilities
supported by this adaptation. A more detailed
discussion of each facility supported 1is to be
found in section II.B.

Unsupported Facilities List

Present a table showing the optional facilities
not supported by this adaptation. A more detailed
discussion of the limitations of this adapt-tion
is to be given in section II.C.

Section II. Discussion of the Adaptation

IT.A

II.B

Distribution of Functions
Discuss the scheme or schemes supported by this
adaptation for distributing functions lL.etween the
host and the front end.

Optional Facilities Supported

Discuss each of the facilities listed 1in section
I.C. This section is to contain a subsection for

- 150 -

:
A
“

ey N
[\ AT

e O,

AT

. o«

PSR

A

RO

T T TR P
f‘\"‘T' »k“‘ -

Fa

— e

-~ A - P [
- P T T e - -~ e i e [U

- - Adaptation Desc?iptiohﬁj

P

each of the facilities.
IX.C Unsupported Optional Facilities

Discuss the optional features o¢f the service
access protocol that are not implemented and
discuss the genéral limitations of this
adaptation. -

I¥.D Additional Facilities

Discuss in détail any facilities not provided for
or left undefined by thé service access protocol.

II.E Host System Considerations

Discuss how the host SAPI must manipulate wvarious
4. : host system primitives, system commands, user
programs, etc. toc perform its functions.

20 Ii.F Translation Considerations

iI.F.1 Command Translation

Discuss the problems of translating command
functions from those of the offloaded
protocol into equivalent functions in the
host system.

II.F.2 Data Translation

Discuss any data representation mismatch (see
below), the translation problems involved,
and how they are solved in this adaptation.

e B e

II.G References

Give references to all relevant documents.

Section III. Definition of the Adaptation

III.A Command Translation

Describe in detail the command translations that
are performed by the host SAPI. For example, if
the service defines a function called "Intersect",

M then this section is to give a detailed
; description of how the host SAPI performs this
o function.

- 151 -

N (PN

w!

> s wmm

T - -
" o

o epmer Lo~ e dat - [

9
poad v e Bl SR

o o,

T o
e e ——

@ - w xae

&

o iud

e

PP P NP

DA

PRt R

R e Y

5 - - : o - 8
" - < .. e s
‘ Adaptation-Descriptions 1
’1 - - -] k
I¥I.B Data Translation - - . -
) E - :
L) Describe in detail any data translations that are - -
performed by the SAPIs. For example, if ASCII is
‘ converted to E3CDIC, the conversion table is to be i
' given. . . P .)
: III.C Syntax
P Describe the 5syntax of eath service access 3
: protocol message, 1if it éiffers from the service
' access protocol specification. The description is ~e
; to be iIn the same order and in the same form as in
; the service .access protocol specification. It may :
! be .convenient to define additisnal facilities and
i fields at this time.
%
i
: i
i
5] :
o
f ,
4
s -~ 152 - %
. e P S rm——— ~w%£
“ A el W e e amemoan e azllt ot e

" Adsptation Deascriptions

’

¥

[YL S, S WS-,

Data Representation Mismatch

i The data répresentation miszatch problems which must be addressed -:f
) i by an adaptation description are: - - :ﬁ
P 4
— (- - - ’
k. H . -) B - - s
%j f a) cheracter set mismatch and .) : i
- 4 B - o
1 . . . 3
k- f b) data urit size -mismatch. - P
£ | - v
¥] R g
Ev § Thé character sets and codes employed by thé host and front end -
! i - t
{ T - £
t ! may differ. Any translation required is to be specified in the :
i . 7
7, . adaptation description. P s
Pr ¥
<2 5
3)) .) =
= The sizes of thc data units emploved by the host and the front =
end may differ. This may require redefinition of the syntax of '
X
sarvice access protocol message fields in order to place them on § .
= 3
-3
I convenient boundaries. This redefinition of fields may involve: ? :
(¥
| i
e
2) extending fields beyond the minimum 1lengths specified i
in the service access protocol spmecification, and/ox A
=
'
b) inserting padding fields where required. =
g
Any transformation of data from one unit size te another is to be i
po

specified in tne adaptaticn desciiption.

g

PrY

- 153 -

it
e e b W e =

e SRR

N % . - . e e A AR Y N 2)
'
et é¢

i e A e 4

154

BLANK PAGE

.
.
/
N I
' \
.
?
.
\ .
A
\ v t
FEN)
1
\ . \
v 1}
ot
)
. ! .
Crar‘bw./i,\x.l.il-;. e gt e T o s g » N N
)., e L — -
fu.(.ﬁ...z—. . .,I. .::w. PN :~ . Y . .1:: S —— ~ - — : " o [P P f.’».).!nt.:.
EJcEQE .wre‘fLuEan.F:s;E AU Y U PRI AR lgat WY TN T T e e N e Y

|

-

o WY W eg— TR

B A i abbutia SR IL A At 1)

e b van v o i,

b 23

] Bost Fromt-Exd Protocsl
. Service Rccess Protoccl Interpreter
. - State T2hle

This section contains the detziled stare rransitiom table for asy
SRPI interacting with a channel mechine. This state table mast
be a subset of ih:e state tzble for any SAFE., The S2PY and the
channel machine communicate wia channel interface evests. The
channel machine checks the events frem the SAPI for oonsistency
and rejects any imconsistent events.

Notation

States. All state names are primted with a1l capital letters.
If the state name consisrs of two or Mmore words, the words are
separated by an underscere (). Exanples: PFILL, SENTER PENDING.

Events. All event manes cf events caused by a S2PI are eifrrer of
the form:

s <interface eveat mane> <oveai suffix>

where <interfacz event nene> is one of the following:

begin
transait
execuce
end

and <event suffix> is either

c indicating a Command
or r indicating a Respoase

! or of the form:
s_<interface event nane>
where <interface event name> is one of the following:
ready

identify
status

- 155 -

T T g e meii T 2" ——

SAPT S=zies

B A TR SR A I A T (AT D A AR W58 bl MRl e 80 <

icd

ik

- =

N~

LR Y

SAPE Statex

221 zve~t cames of evests canzed Br a CPI or cone of 3Its chaznel
machines are either of the form:

e <interface event camed® S{event suffix>
where {interface svect mane> is one of the followim):

begim
tramsnit
exerate
ecd
and Cevent suEfizd> iz fhe same 25 above
or of the form:
¢ {ipterface evenit name>

woere Sinterface event ansme> is cne of the following:

ready
states
- accept
reject.
Event manes are 211 lower cass. Exzunples: s Degia ¢, ¢_begin c,

s ready, © statos.

2 detailed cescription cf each event cen be found in the section
ertitied "Charmel Interface”™.

Monenciature

Acceptable/lizacceptable: an event may be found mnaccertable by an
SAPI 3if the SAPI detects am error im the Text field or iZ it is
unable o fuifill the reguest described im the Text £ield due fo
lack of resaurces, inssificient access rights, etc.

Stetss # £:- an evept with this a2anotation iIndicates that the
event to which it is 2 response was not svuccessfui.

Generic Requests: 2 process or user of an SAPI generates iaputs
to 1t. These infuts are wodelled in the state teble as *generi-~
inputs™. They are "request for ssrvice™, Trequest tarnination”,
*send deta™, and "send Execute Cornand®. This specification dnes
not define the paraneters or any other characteristics of txe
interfece between an SAPI and any nigher level processes, 1t
nerely =cognizes the existence of such iateractions. This
interface mpay bLe defined Ly the service 1level protocsl or
adaptation descriptions. 1Tt nay be nighly specific not only to

~ 154 -

¥

e
\

- ORI 5 - = P T T

) 4y
«¥)

SAPI States

the SAPI but also to the environment in which it is implemented.

SAPYI States

NUGLEL: Ap SAPI in this state is nmot e2ctive.

PEXDING: An SAPI in this state has requested its CPI to attempt
to establish a virtuwal chamnel to its apposite. It has caused an
s begin c event and is waiting for a c _begin r event. (The
channel machine has sent a Begin Comeand and is waiting for a

Begza_;esponse.,

TRKING BACK: 2Rn SAPI in this state has been requested to
terizinate communicaticn with :iIts 2pposite while it was in the
PENDING state amnd has caused an s end ¢ event Lefore the
c _begin r event hzs come froe the chamnel machine.

ESTASLISHED: An SAPY ip this state has established comnmuanication
with its apposits

TERMINATING: 2n SEPI in this state has been requested to
tercinate comrunication with 3its apposite, and has causeé an
s end ¢ event and is wa2iting for %the c_end_r evept acknowledging
teraination by its apposite.

~ 157 -

L T s T

A

T G W e M T S gy WS g S e B TS W ey S4B v

LY
)
-t
>
e
%
=
b {L
5] o
X
3 o]
@
v v 3
Al l'lll'll-ll'lllll“!' \
{
\
M we "y !
4 4
H n (3-8 1
[])
{= e e 3 -] -
2 o ™ '3y |
11 [T [T \
5 N a8 1 i :
o 4] n- Vi ,
RS e TI tmm R Bow swa VA SNR San TSP SRR GG G Vee TR gans —

(oo
< A 1 1
7 2 0 ! \ '
- [+ o
t 1 1
& g & .
) (M) 0 |]
2 S b
. e TR G G SRR SR Gsm WS W W SR S e S Aew Sme W e
&
]
)
v > .
1) L) !
-] L] £ |
i ~ [3] 1Y 4
£ 4 YR | v A
» v LN o a =
& C I A= A S
® 0 vo o v
& i mb_ 80, o "
[0 LX) sSu S h
e o S e e o s St S 08 S Y e S S S o S
7] [!
te
@ < b
+ B
o A
s ta
7] [58-
g -l - - -
- - e o] w]
o 35 3 2 =)
[N ¥ 3 % 2 3
< .
S l'!‘cn'utll'l'll'll."ll'l
’
ARy A b - > -

¥ T TEIm o mEEmEm e e e e, e e e e R s r e o= fmEs mm e mma e Ee 0 - - - /e e e e memmmmn s T e s e T T e e e e

SAPI States

Kia o

.
1 T,
4 | - T I° | | |
-} { CURRENT STATE | INPUT | NEXT STATE I CUTPUT | COMMENT J
i I (SUS~-STATE) | | | 1 !
¢ I | I | ! I
| - i) I ! [|
4 | PENDING. | request] TAKING'BACK § s end c | 1
i 1 ! termination 1 .1 (flushing) 1 - 1
H] - $ l I ! |
. ! I - | 1 ! 1
#y | PENDING - | acceptable i ESTABLISHED | - === I I
E?i | " | c_begin r | i | - |
: l - | (Status=8) | | I i
Z i I] | e !
. I 1 1 1 i 1
E i | PENDING] c.begin_ r | NULL l -=---- 1 terminate service I
i | (Status#@) | i { for user |
i l ! i 1 1
s | | ! - $ I 1
: ; | PENDING i unacceptable | TERMINATIXG I s_end ¢ | terminate service f
‘ 1 | c_begin_r 1 i (flushing) 1 for user }
: , | | (Status=9) I I I i
et | | i | i___ I
;o ' l l l | I I
E P | PENDING | c_end ¢ | NULL | s end r | terminate service 1
] ' H I (fushing or ! } | for user §
- I I non-flushiag) | I] 1
L | l 1] —] PR |
L | i [1 1 - 1
' ‘ | PENDING I c_reject I ===]l - --=-- | attempt error i
3] | | I i recovery i
" I__ I I__: I N 1
. | I | ! | i
. [PENDING | any other event J === | === -~ I]
i I —— | N ; I__._ { I I
i
F K
i
L
1
3
!
4 f
i
{
4 i
i
|
.
% !
t
! - 159 -
. ! —— o

il v
e R R §

e -

e

Ol
e - —————

K

e e gt s e ey e
Y M

- ——

[N

IRV SO -

1.k

Xe

D A e e

PP .« i, - o i

4

e e i < e

SAPI States

} 1" | l g I Tt
i CURRE"T STATE | INPUT | NEXT STATE | ouTPUT | COMMENT
I {SUB-STATE) | i I !
! - i I ! S S
} 1 ! } . I
| TARING BACK | c_begin_r ! suLL I -=-==-- I terminate service
] { (Status#0) i { | for user T
i ez _d — | —
i H f | .
I TAKIYS BACK | ¢ end_c | NULL I = -=-=-- | terminate service
i) I (fiushing) I { | for user - N
_____ ! {] N e e
i I I | =
TAYINE PATK | c_end_r I NoLL I - =-==-- ! terminate service
! I l | for user
SRS B I I_ - N S e
I [

TAXINT BACK

c reject

Pi taTas

SAPI States
TEmTmmmmmT | | | T TeTTTmmeTTTT {
. | CURRENT STATE | INPUT | NEXT STATE] ouTPUT | COMMENT]
1 (SUB-3TATE) ! | | |)
| S | | | e e {
Es 17T I [| I I
F'% | ESTABLISHED | request | TERMINATING | s_end_c (flushing | .]
i ! | | termipation | { or non-flushing as | | s
? I | (flushing or | | requested) | |
k 1 | non-flushing) | | | I
: | e | I . | | "
H | | | I | |
9y | ESTABLISMED | send data R | s_transmit_c | transfer data‘as l -
EA | |] I | allowed by c_ready I
7 | | e | | U
b 1 } |] 1 1
£ | ESTABLISHED | send I --=--- | s_execute_c | !
o I | Execute_Command f f l [
B | R [DO D e ———— | oo e |
o | | | | I]
o | ESTABLISHED | ¢ _end ¢ | NULL | s_end_r | terminate service |
L | ! (flushing or | | | for user |
i | I non-flushing) | | I |
| [, | | e | I
§ | | I |]
. | ESTABLISHED | c_execute_c I - -=~=-- | s_execute_r | |
“i | P S, b e e I I |
4 I I i I I I
) I ESTABLISHED | c_execute_r I ===~~~ I == -~ | | ;
N S [| | e e e e |
|] | 1 1 1
, | ESTABLISHED | c_reject | ===~ | = ===~ | attempt error |
! | | | | I recovery]
’ b | e S | SO S e l
1= | | 1 | |
| ESTABLISHED | c_transmit ¢ Il ===~ I -=--=-- | transfer data as | s
| | | | | allowed by s_ready | '
| JE | ———— | | e e e ———— |
I [| | | I
. | ESTARLISHED | any other event | === | === == | I
:i S e S B SR [e S [N B cmemaal
} .
|5
l H
éi
A .
1
X
t
1
- 161 - 1
e
- v L e §ei .3,‘3’,@39;?"' =
‘;2: ks ‘¢ PRI e ..". et S = 4 o e P B

e

5

DR

e

T R Wyt i bbbt o

NN

TTUTTTTTOAPLY Drates

€

| | 7 | - | Ty
| CURRENT STATE | INPUT | NEXT STATE | OUTPUT | COMMENT | '
| (SUB-STATE) | | | | |
I | U | — | JES D |
|] | | I | ¢
| TERMINATING | c_end_c | NULL | s_end_r | terminate service |
| I (flushing or | | | for user |
I | non-flushing) | I | |
S . ok I I
	I			
TERMINATING	c_ end r	NULL	===	terminate service
		l	for user	
l__		.	S I '	
.				
= TERMINATING : any other event	=~ - - - -	=== =~ ;		

e . .

162

-

e e+ e,

cde

Caitikh

T
o
¥

HFP Maintenance Service

HFP MAINTENANCE SERVICE

Introduction

The HFP Maintenance Service provides the management functions for
the ‘host to front end protocols. Since the present document
fully specifies only the channel protocol, these management
functions. are here defined only in relation to the channel
protocol. The HFP Maintenance Service may also provide
management functions for the link protocol and the service access
protocols. Whenever such additional management functions are
defined for the HFP Maintenance Service, their definitions should
be incorporated into the present specification.

The HFP Maintenance Service provides three management functions
for the channel protocol. These are:

1) initializing host - front end communication,
2) recording CPI error reports, and

3) communicating CPI error reports between apposite CPIs.

The HFP Maintenance Service is implemented in both the host and
in the front end. The two HEFP Maintenance Service
implementations communicate via an HFP Maintenance Service Access
Protocol, which uses the channel protocol implementation as its
communications medium,

- 163 -

e S TN ST T A R LT e T

o e

Ve

[7 PR S

.
i

s 5 . - I
¥ HFP Maintenance Service . : y ;
E
2
2
HFP Maintenance Service B
Service Protocol
Specification

I. HFP Maintenance Service Codé Number

@ (Zero)

II. Description of the HFP Maintenance Service

The HFP Maintenance Service provides management functions for :
the 1link, channel, and service access protocol interpreters ¢
(see Introduction, above). .

Synopsis of Message Use

begin command

is sent by the host HFP Maintenance Service to
initiate (or restart) host-front end \
communication. i

begin response

e e v - o 2 o e Ao e & s PO g s A1 S 1 e Aoy - e e I

RN | S

is sent by the front end HFP Maintenance Service
to confirm the establishment of communication.

end command)

S
oL

is sent by either the host or the front end HFP
Maintenance Service to terminate channel level
communicatioen.

end response

is sent to confirm that channel level
communication has been terminated.

ki execute command 3

i i not used ’

E:u | H

>‘ ‘

. -

i I ;

I

|

2

AL

'[.

i

g‘\

{

g ~ 164 -
," 3\' .
‘ L&} .

i Tty S AN - ———— e a— A "

! - ¢ _ $ LG s

execute response
1 not used
- transmit command
i . . ig sent by either the host or the front end HFP
i Maintenance Service to communicate error reports
4 . made by the CPIs. .
{

ST, ey

L

é - 165 -

!

BT N

()

kb

HFP- Maintenance Service o) >

& IIT. Message Use 3) fﬂ
- IIT A. begin command . 3
3
t . -3

ﬁ I11 A 1. When sent

1 . B) - K
SO (A begin_command is sent by the host HFP

1 Maintenance ‘Service when the host HFP

b implementation is ready to engage in channel

S level communication.
- |

r g III A 2. Action on receipt

b

£ i When the front end HFP M“aintenance Service

o receives a begin command, it determines
by whether or not the front end HFP
%‘ ; implementation is prepared to engage in
E! : channel level communication, and, if sc, it
by sends a begin_response.
(o
] ‘ III A 3. TEXT field syntax
.i" empty
N III A 4. TEXT field semantics f
! .
i1 irrelevant

B .
) o
.
N

1
’ 3
4
R
A i
AN
, -
: :
! ;!
i !@
! .
.'/1
+
3 :
- 166 - .
d N
; - I g
B oo e Lo e . IR el

ihd
o iy o

o <
r—. %

o
o s

FGY SN

i soe . o

e Ja

o
o e i e 4 Rt § 1 i
'

HFP Maintenance Service

III B. begin response

III B i. when sent

A begin response is sent by the front end HFP
Maintenance Service whan the front endé HEPP
implementation 1is prepared to engage - in
channel level communication.

III B 2. Action on receipt

After the host HFP Maintenance Service
receives a begin response, it proceeds to
handle error reports from the CPI.

IITI B 3. TEXT field svntax

empty

IIT B 4. TEXT field semantics

irrelevant

HF2 Maintenance Service -

ITII C. end command

IITI C 1. when sent

An end command is sent by either HFP
Maintenance Service to terminate channel
level communication. 1

iII C 2. Action on receipt ;

When the host cr front end HFP Maintenance
Service receives an end_command, it should
notify all SAPI's using the HFP that service
is ending, "clean up”, and send an
end_response.

IIT C 3. TEXT field syfitax

empty

III C 4. TEXT field semantics

. Wm. N \

A

i
v i st e g e i

| S wite o
AL

irrelevant

N P P

£

4
vt
k

ey Y
T

b snai . i et s~ A4 e

x

v

‘C\.‘.\.

T TR, T—
¢

HFP waintessnce Service

IXE p. end resgonsa

IIX D i, When zext

Rty

Enr end response is sent to confirm thet
channel Zevel commenication bas Ereemn
termizated.

III D 2. Action ca receipt

none

IIX D 3. TEXT field symiax

enpiy

ITY D £. TEXT £field semantics

irrelevant

- 169 -

A

&
k!
i
#
-
1

LIS —. -

ot d

I E. execzte command

ot sed

FIE F. exernte resoense

mot osed

- 179 -

7Y MEILODTTCIMNTEYT SCEWITE

¥EIf 5. tyassnit command

IEY @ A. Weem sent

A trazsmit comrzad Es seat by either ®IP
Mzintemance Service to cosmmonicste an error
report made Iy the chamrel protocol iInterpreter.

IXE G 2. Rrtiecn on receipt

When an =P Walnternance Service receives a
tramsnit command motifwviegy it of a2p erreor, it
shculd log the errsr and if possibie attempt any
error recovery.

IIE & 3. TEXT field syntax

Canse: FIXED {2}
Header: FIXEDL72)
biagmostics: COMPLEX (7}

IXE G 4. FEXT field sementics

IXE € 4 {(a2). Cause

Tails field will contaim ome of the Status codes.
IZT G 4 (D). Eeader

This field contains the channel protocol HEAPER
for the message in which the error was detected.

This field will contain aay other dJiagnostic
information that the CPI can provide relating to
the error. If this traasnit _command is
reporting an error at the service access level,
this field may contain the erroneous service
access protocol messaga.

i IiI G 4 {c). Diagnostics
|

!

a

T TR TR T T TR T TR v
4w - e

BTN TY

- 171 -

4 WL aTwmmemmoym rervee
At s e - 3¢ r Yo

i

[

o i gttt it

|y Wemrs.

W evmm— A W o) . PRI

- 172 -

| .
(ol
=,
[-
—
e
pr—
[an]

N
o ————

S

”
- e

TOnctiAM

PO ———

Status

Channel Protocol Response
Status Todes

Channel Protocol Response
States Todes

¥eaning

g
1

32

33

34

35

Comnznd was successful.

Channel non-existent: the Group and Menmber fields
of a Command (cther than a Begin_Comnand)
refererced a chernel unknown to the receiving
CPi.

ilegal state: a message was received referencing
3@ channel which was in a state for which the
Command is an illegal imnput.

Coanand not iImplemented: a Command was received
whose Type was legal but not implemented.
Currently this can only be a 3egin Command or an
Execute_Command. -

Message tco long: the number of bits in the
Command exceeded the maximum permitted by the
receiving CPI.

Service access protocol message error: am error
in the service access protocol message contained
in the TEXT field of the Command was detected by
the SAPI.

Illegal Control field value: the Control field
of the Command contained an undefined value.

Channel in use: the channel referenced in the
Begin Command was already assigned (i.e., not in
the NULL state). ‘

Service not implemented: the Service field in the
Begin_Command specified an SAPI not implemented
at. the receiving site.

Insufficient resources: the receiver of the
B2gin_Command did not have sufficient resources
for establishing the host to front end channel.

Out of sequence: a Transmit_Command was received
and discarded whose Seq field was neither in
sequence (equal to ([<iast received> + 1)) nor a
duplicate (between ([<last received> - 7] and
{last received> inclusive) (see Flow Control).

- 173 -

e S

Cﬁannel'Protocol Respbnse

Status Codes

36

37

38

39

Out of window: a Transmit Command was received
and discarded whose Seq field was between ({lacst
received> + Credit + 1) and (<last rece:ved) + 8)
inclusive (see Flow Control).

Bad channel polarity: the high-order bhit of the
Group field in the Begin_Command had the wrong
value.

Service not operational: the Service field in the

.Begin_Command spec1f1ed an SAPI which is

implemented at the receiving site but- which is
temporariiy unavailable.

Command discarded: the channel machine .received
a Transmit Command or an Execute Command, was in
the SENDER _DRAINING or SENDER_TERMINATING state,
and has discarded the Command without passing its
TEXT field to the service access level.

- 174 -

P m———

P75) LRI

K.

Y N

A

"~
- ———

L. . s

P IS .

-

T

e it A a2

e
~

g g,

an

R ot g S,

e

e o e o S e St i aeien & ORI e e e ae

SECURITY CLASSIFICATION CF THIS PAGE (#hen Data Entercd) R
READ INSTRUCTIONS

e
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

NUMBER me e 2. GOVY ACCESSION NO.] 3. RECIPIENT'S CATALOG NUMBER.

8fi2.c-INFE.14 | | A> ALp6 475

TSt E-(end- tle)
WWMCCS a1
Host to Front End Protocols

5. TYPE OF REPORY 8 PERIOD COVERED

Specifications Version l.ﬁ’ & PERFORNING ORG. REPORT NUMBER

=

ohn D./ Day
‘IGary R. ,Grossman
-1{Richard H.]/Howe

J 8. CONTRACT OR GRANT NUMBER(s)

W:vm}s; \

ﬁ\:\

9M3Ecmlzu‘lon NAME AND ADDRESS 10. :ggﬁ?wo%fgg%;”?&oggg* TASK
Digital Technology Incorporated - —— A
302 East John 32017K 4177/
Champaign, ILL 61820 O 2 123 kﬁw.
11. CONTROLLING OFFICE NAME AND ADDRESS 124~-REPORTDATE ™
Defense Communications Agency x«j!, jts November 7§jL_
‘CCTC/CA20) “—~{13. NUMBER OF PAGES
11440 Isaac Newton Sq., N., Reston, VA 22090 173 .
14. MONITORING AGENCY NAME & ADDRESS{f different from Controlling Office) 15. SECURITY CLASS, (of this report) .
: UNCLASSIFIED
15a, DECLASSIFICATION/ DOWNGRADING
. SCHEDULE

16. DISTRISUTION STATEMENT (of this Report)

Approved for Public Release
Distribution unlimited

‘17. DISTRIBUTION STATEMENT (of the abstsact entered in Block 20, il differeat {rom Report)

No Restriction Distribution

18. SUPPLEMENTARY NOTES

19, KEY WORDS (Continuo on treversp aide I{ necossasy and identlly by block numbor)

Network Front End

Host-to-Front End Protocol

Protocol Specification '
MMam ¢4 TioNd NET WeAKS

20, ABSTRACT (Con!lnuo on roverso alde If necesaary and Identify by block number)

This document presents the specifications of the WWMCCS Host to Front End
protocols. A brief overview of the WWMCCS Network Front End Protocol
“architecture is presented The' link protocol is functionally specified. The
"Channel" protocol is completely speu1f1ed The complete.channe] -protocol
specification includes a narrative overview of -the channel protocol mechanisms,

state table. A meta-spécification for the service_ access protoco]s 1s

presented.

detailed treatment of each channel protocol nessage and -event type, and a bomp1ete

a

P e ——

DD | Gi7s 1473 EOITION OF 1KoV 65 1S OBSOLETE : .
S/N 0102-014- ason . -

DD

O / f é SECURITY CLASSIFICATION OF THIS PAGY (Whon Data Entered)
N g

. - P
ot LR = st

—pa———

~ by

e At

e
SN

— g
Pt

e st
L g

3

